Outstanding Reading

- Continue chapter 7 in the Wainwright and Jordan book.
- Start chapter 8 in the Wainwright and Jordan book.
We need to find one makeup lecture this term.

- L1 (9/28): Introduction, Families, Semantics
- LX (9/30): No class
- L2 (10/5): Trees, exact inference
- L3 (10/7): More on trees and inference.
- L4 (10/12): To tree or not to tree.
- L5 (10/14): All models lead to trees
- L6 (10/19): Decomposable, JT
- L7 (10/21): Inference on JT’s
- L8 (10/26): JT Inference, semi-rings,
- L9 (10/28): time-space tradeoff, conditioning, LBP
- L10 (11/2): LBP, exp. f. models
- L11 (11/4): exp. f. models, marg poly
- L12 (11/9): pseudo marg, Bethe
- LXX (11/11): Veterans Day, no class
- L13 (11/16): Bethe, loop series
- LXX (11/25): Thanksgiving, no class
- L16 (11/30): mean field
- L17 (12/2): convexified, tree reweighted
- L18 (12/7): tree reweighted, MPE
- L19: (12/9): Final Presentations: (12/9):

Theorem 1 (Relationship between A and A^*)

(a) For any $\mu \in \mathcal{M}^\circ$, $\theta(\mu)$ unique canonical parameter sat. matching condition, then conj. dual takes form:

$$A^*(\mu) = \sup_{\theta \in \Omega} \langle \theta, \mu \rangle - A(\theta) = \begin{cases} -H(p_{\theta(\mu)}) & \text{if } \mu \in \mathcal{M}^\circ \\ +\infty & \text{if } \mu \notin \bar{\mathcal{M}} \end{cases} \quad (1)$$

(b) Partition function has variational representation (dual of dual)

$$A(\theta) = \sup_{\mu \in \mathcal{M}} \{ \langle \theta, \mu \rangle - A^*(\mu) \} \quad (2)$$

(c) For $\theta \in \Omega$, sup occurs at $\mu \in \mathcal{M}^\circ$ at moment matching conditions

$$\mu = \int_{D_X} \phi(x)p_{\theta}(x)\nu(dx) = \mathbb{E}_{\theta}[\phi(X)] = \nabla A(\theta) \quad (3)$$
Variational Problem

Original variational representation of log partition function

\[
A(\theta) = \sup_{\mu \in \mathcal{M}} \{ \langle \theta, \mu \rangle - A^*(\mu) \} \tag{4}
\]

- Set \(\mathcal{M} \leftarrow \mathbb{L} \) and \(-A^*(\mu) \leftarrow H_{\text{Bethe}}(\tau) \) to get Bethe variational approximation, LBP fixed point.
- Set \(\mathcal{M} \leftarrow \mathbb{L}_t(G) \) (hypergraph marginal polytope), \(-A^*(\mu) \leftarrow H_{\text{app}}(\tau) \) where \(H_{\text{app}} = \sum_{g \in E} c(g) H_g(\tau_g) \) (via Möbius) to get Kikuchi variational approximation, message passing on hypergraphs.
- Partition \(\tau \) into \((\tau, \tilde{\tau})\), and set \(\mathcal{M} \leftarrow \mathcal{L}(\phi, \Phi) \) and set \(-A^*(\mu) \leftarrow H_{\text{ep}}(\tau, \tilde{\tau}) \) to get expectation propagation.
- Mean field (from variational approximation perspective) is

\[
A(\theta) \geq \max_{\mu \in \mathcal{M}_F(G)} \{ \langle \mu, \theta \rangle - A^*_F(\mu) \} = A_{\text{mf}}(\theta) \tag{5}
\]

since \(\mathcal{M}_F(G) \subseteq \mathcal{M} \)

Convex Relaxations and Upper Bounds

\[
A(\theta) = \sup_{\mu \in \mathcal{M}} \{ \langle \theta, \mu \rangle - A^*(\mu) \} \tag{6}
\]

- What about upper bounds?
- Other than mean field, none of the other approximation methods have been anything other than approximation methods.
- We would like both lower and upper bounds of \(A(\theta) \) since that will allow us to produce upper and lower bounds of the probabilistic queries we wish to perform.
- If the upper and lower bounds between a given probably \(p \) is small, \(p_L \leq p \leq p_U \), with \(p_U - p_L \leq \epsilon \), we have guarantees, for a particular instance of a model.
- In this next chapter (Chap 7), we will “convexify” \(H(\mu) \) and at the same time produce upper bounds.
Recall sufficient stats $\phi = (\phi_\alpha, \alpha \in I)$ and canonical parameters $\theta = (\theta_\alpha, \alpha \in I)$.

In general, inference (computing mean parameters) is hard for a given G.

For a tractable subgraph F, it is not so hard, as we saw in the mean field case. Note in mean field case, we had one particular F.

Let D be a set of subfamilies that are tractable.

I.e., D might be all spanning trees of G, or some subset of spanning trees that we like.

As before, $I(F) \subseteq I$ are the indices of the suff. stats. that abide by F, and $|I(F)| = d(F) < d = |I|$ suff. stats.

As before, $\mathcal{M}(F)$ is set of realizable mean parameters associated with F, so that $\mu(F) \in \mathcal{M}(F)$. Thus, $\mathcal{M}(F) \subseteq \mathbb{R}^{|I(F)|}$, and

$$\mathcal{M}(F) = \left\{ \mu \in \mathbb{R}^{|I(F)|} | \exists \mu_s.t. \mu_\alpha = \mathbb{E}_p[\phi_\alpha(X)] \ \forall \alpha \in I(F) \right\} \quad (7)$$

Note $\mathcal{M}_F(G) \neq \mathcal{M}(F)$.

Given $\mu \in \mathcal{M}$, $\mu(F) \in \mathcal{M}(F)$ projects from I to $I(F)$.

Thus, for any $\mu \in \mathcal{M} \subseteq \mathbb{R}^d$, we have that $\mu(F) \in \mathcal{M}(F) \subseteq \mathbb{R}^{d(F)}$.

We can moreover define the entropy associated with projected mean, namely $H(\mu(F)) \triangleq H(p_{\mu(F)}) = -A^*(\mu(F))$.

Critically, we have that $H(\mu(F)) \geq H(\mu) = H(p_{\mu})$, as we show next.
Proposition 2

Maximum Entropy Bounds Given any mean parameter \(\mu \in \mathcal{M} \) and its projection \(\mu(F) \) onto any subgraph \(F \), we have the bound

\[
A^*(\mu(F)) \leq A^*(\mu)
\]

or alternatively stated, \(H(\mu(F)) \geq H(\mu) \).

- Intuition: \(H(\mu) = H(p_\mu) \) is the entropy of the exponential family model with mean parameters \(\mu \).
- equivalently \(H(\mu) = H(p_\mu) \) is the entropy of the distribution that is the solution to the maximum entropy problem subject to the constraints that it has \(\mu = \mathbb{E}_{p_\theta}[\phi(X)] \).
- When we form \(\mu(F) \), there are fewer constraints, so the entropy in the corresponding maximum entropy problem may get larger.
- Thus, \(H(\mu(F)) \geq H(\mu) \).

Proof.

- Dual problem

\[
A^*(\mu) = \sup_{\theta \in \mathbb{R}^d} \{ \langle \mu, \theta \rangle - A(\theta) \}
\]

- Dual problem in sub-graph case.

\[
A^*(\mu(F)) = \sup_{\theta(F) \in \mathbb{R}^d(F)} \{ \langle \mu(F), \theta(F) \rangle - A(\theta(F)) \}
\]

- Dual problem in sub-graph case — alternate expression

\[
A^*(\mu(F)) = \sup_{\theta \in \mathbb{R}^d} \{ \langle \mu, \theta \rangle - A(\theta) \}
\]

\[
\theta_\alpha = 0 \ \forall \alpha \notin \mathcal{I}(F)
\]

Thus, \(A^*(\mu) \geq A^*(\mu(F)) \).
Convex Relaxations and Upper Bounds - Relaxed Entropy

- Note that the upper bound is true for each $F \in \mathcal{D}$, and thus would be true for mixtures of different $F \in \mathcal{D}$.

- We can form a distribution ρ over tractable structures. I.e., $\rho \in \mathbb{R}^{\lvert \mathcal{D} \rvert}$, i.e., $\rho(F) \geq 0$ for $F \in \mathcal{D}$ and $\sum_{F \in \mathcal{D}} \rho(F) = 1$.

- Convex combination, gives general upper bound

$$H(\mu) \leq \mathbb{E}_\rho[H(\mu(F))] = \sum_{F \in \mathcal{D}} \rho(F)H(\mu(F)) \quad (12)$$

- This will be our convexified upper bound on entropy.

- Compared to mean field, we are not choosing only one structure, but many of them, and mixing them together in certain ways.

Convex Relaxations and Upper Bounds - Outer bound

- When we form the mixture, and we wish to evaluate a given $\mu(F)$ on it, we need to make sure that each component can properly evaluate any possible $\mu(F)$, so logical constraint is to make sure any $\mu(F)$ works for all of them.

- Constraint set as follows:

$$\mathcal{L}(G; \mathcal{D}) = \left\{ \tau \in \mathbb{R}^d \mid \tau(F) \in \mathcal{M}(F) \quad \forall F \in \mathcal{D} \right\} \quad (13)$$

$$= \bigcap_{F \in \mathcal{D}} \mathcal{M}(F) \quad (14)$$

- Note this is an outer bound i.e., $\mathcal{L}(G; \mathcal{D}) \supseteq \mathcal{M}(G)$ since any member of $\mathcal{M}(G)$ (any valid mean parameter for G) must also be a member of any $\mathcal{M}(F)$ (i.e., non-neg, sums to 1, and consistency).

- Also note, $\mathcal{L}(G; \mathcal{D})$ is convex since it is the intersection of a set of convex sets.
Convex Upper Bounds

- Combining the upper bound on entropy, and the outer bound on M, we get a new variational approximation to the cumulant function.

\[B_D(\theta; \rho) \triangleq \sup_{\tau \in \mathcal{L}(G; \mathcal{D})} \left\{ \langle \tau, \theta \rangle + \sum_{F \in \mathcal{D}} \rho(F) H(\tau(F)) \right\} \quad (15) \]

- Objective is convex in θ since it is a max over a set of affine functions of θ (i.e., $g(\theta) = \max_{\tau} \langle \tau, \theta \rangle + c_\tau$)
- Also, $\mathcal{L}(G; \mathcal{D})$ is a convex outer bound on $M(G)$
- Thus $B_D(\theta; \rho)$ is convex, has a global optimal solution, it approximates $A(\theta)$, and best of all is an upper bound, $A(\theta) \leq B_D(\theta; \rho)$

Tree-reweighted sum-product and Bethe

- We can get convex upper bounds in the tree case, and a new style of sum-product algorithm.
- Consider MRF again

\[p_\theta(x) \propto \exp \left\{ \sum_{s \in V} \theta_s(x_s) + \sum_{(s,t) \in E} \theta_{st}(x_s, x_t) \right\} \quad (16) \]

- Let \mathcal{T} be a set of all spanning trees T of G, and let ρ be a distribution over them, $\sum_{T \in \mathcal{T}} \rho(T) = 1$.
- Thus, we have $H(\mu) \leq \sum_{T \in \mathcal{T}} \rho(T) H(\mu(T))$
- For any T, $H(\mu(T))$ has an easy form, i.e.,

\[H(\mu(T)) = \sum_{s \in V} H_s(\mu_s) - \sum_{(s,t) \in E(T)} I_{st}(\mu_{st}) \quad (17) \]

- We want to use this to see what happens when we take the expected value w.r.t. distribution ρ.
Every tree is spanning, all trees have all node, so the probability, according to ρ if a given node is always 1. i.e., $\rho_s = 1, \forall s \in V$.

Thus, in $\mathbb{E}_{\rho}[H(\mu(T))]$, we have a term of the form $\sum_{s \in V} H_s(\mu_s)$.

For edges we need $\rho_{st} = \mathbb{E}_{\rho}[\mathbb{I}((s, t) \in E(T))]$, this indicates the probability of presence of an edge in the set \mathcal{E}.

The expression becomes

$$H(\mu) \leq \sum_{s \in V} H_s(\mu_s) - \sum_{(s, t) \in E} \rho_{st} I_{st}(\mu_{st}) \quad (18)$$

Note right hand sum is over all E (not just a given spanning tree) and terms are weighted by probability of the given edge ρ_{st}.

We also need outer bound on \mathcal{M}.

For discrete case $\mathcal{M} = \mathcal{M}(G)$ is marginal polytope.

$\mathcal{M}(T)$ is marginal polytope for tree, and for a tree is the same as $\mathcal{L}(T)$, the locally consistent pseudo-marginals (which recall are marginals for a tree).

Thus, $\mu(T) \in \mathcal{M}(T)$ requires non-negativity, sum-to-one (at each node), and edge-to-node consistency (marginalization) on each edge. If $G = T$ then we’re done.

For general G, If we ask for $\mu(T) \in \mathcal{M}(T)$ for all $T \in \mathcal{I}$, this is identical to asking for local marginalization on every edge of G.

Thus, in this case $\mathcal{L}(G; \mathcal{I})$ is just the set of locally consistent pseudomarginals, and is the same as the outer bound we saw in the Bethe variational approximation $\mathcal{L}(G)$.

In Bethe case, however, we did not have a bound on entropy, only an outer bound on the marginal polytope. Now, however, we also have a (convexification based) bound on entropy.
Theorem 3 (Tree-Reweighted Bethe and Sum-Product)

(a) For any choice of edge appearance vector \((\rho_{st}, (s, t) \in E)\) in the spanning tree polytope, the cumulant function \(A(\theta)\) evaluated at \(\theta\) is upper bounded by the solution of the tree reweighted Bethe variational problem (BVP):

\[
B_T(\theta; \rho) = \max_{\tau \in \mathbb{L}(G)} \left\{ \langle \tau, \theta \rangle + \sum_{s \in V} H_s(\tau_s) - \sum_{(s,t) \in E} \rho_{st} I_{st}(\tau_{st}) \right\}
\]

For any edge appearance vector such that \(\rho_{st} > 0\) for all edges \((s, t)\), this problem is strictly convex with a unique optimum.

(b) The tree-reweighted BVP can be solved using the tree-reweighted sum-product updates

\[
M_{t \to s}(x_s) \leftarrow \kappa \sum_{x'_t \in \mathcal{X}_t} \varphi_{st}(x_s, x'_t) \prod_{v \in N(t) \setminus s} \frac{[M_{v \to t}(x'_t)]^{\rho_{vt}}}{[M_{s \to t}(x'_t)]^{1-\rho_{ts}}} \]

where \(\varphi_{st}(x_s, x'_t) = \exp\left(\frac{1}{\rho_{st}} \phi_{st}(x_s, x'_t) + \theta_t(x'_t)\right)\). The updates have a unique fixed point under (a).
Tree-reweighted sum-product and Bethe

- Note that if $\rho_{st} \leftarrow 1$, for all $(s, t) \in E$, then we recover standard LBP and Bethe approximation.
- Thus, this is a true convex generalization.
- However, if $\rho_{st} = 1$ then edge (s, t) appears in all spanning trees. If this is indeed true for all spanning trees T, then G must be a tree, and we get back standard tree-based message passing we saw in lecture 2!!

Tree-reweighted sum-product example

(a) a graph, and (b), (c), and (d) various spanning trees.

- What are the edge probabilities ρ_{st}?
In above case, we have both a convexification of the cumulant and an upper bound property.

It should be pointed out that these are not mutual requirements: one can have convex without upper bound and vice versa.

The fixed point has following form:

$$\tau^*_s(x_s) = \kappa \exp \left\{ \theta_s(x_s) \right\} \prod_{v \in N(s)} [M^*_{v \to s}(x_s)]^{\rho_{vs}}$$ \hspace{1cm} (21)

$$\tau^*_{st}(x_s, x_t) = \kappa \varphi_{st}(x_s, x_t) \frac{\prod_{v \in N(s) \setminus t} [M^*_{vs}(x_s)]^{\rho_{vs}} \prod_{v \in N(t) \setminus s} [M^*_{vt}(x_t)]^{\rho_{vt}}}{[M^*_{ts}(x_s)](1-\rho_{st}) [M^*_{st}(x_t)](1-\rho_{ts})}$$ \hspace{1cm} (22)

with \(\varphi_{st}(x_s, x_t) = \exp \left\{ \frac{1}{\rho_{st}} \theta_{st}(x_s, x_t) + \theta_s(x_s) + \theta_t(x_t) \right\} \)

Damping appears in practice to help convergence, where each new message is a convex mixture of the previous version if itself and the new message according to the equations.
Why stop at trees, instead could use hypertrees and then deduce a hypertree version of the reweighted BP algorithm.

Example in book considers k-trees, with tree width at most t. I.e. $\Xi(t)$.

Then we get the same form of bounds

\[H(\mu) \leq E\rho[H(\mu(T))] = - \sum_{T \in \Xi(t)} \rho(T) H(\mu(T)) \]

but here T is over all valid k-trees.

This leads to a convexified Kikuchi variational problem

\[A(\theta) \leq B_{\Xi(t)}(\theta; \rho) = \max_{\tau \in L(G)} \{ \langle \tau, \theta \rangle + E\rho[H(\tau(T))] \} \]

same form as before, but of course quite different.

Other variational variants have convexified version.

Convexified forms of EP

\[H_{ep}(\tau, \tilde{\tau}; \rho) = H(\tau) + \sum_{\ell=1}^{d_1} \rho(\ell) [H(\tau, \tilde{\tau}^\ell) - H(\tau)] \]

where $\sum_\ell \rho(\ell) = 1$.

Lagrangian formulation, solutions to that, reweighted EP, "power EP"
Other variants

- Why only trees? There could be other tractable families.
- Planar graphs, restricted grids
- Other forms, perhaps it would be possible to take mixtures of structures each of which might not have low tree width but has restricted potentials in some way.
- Examples from book:
 - Use of Gaussian continuous entropy as an upper bound and a covariance-based outer bound of M.
 - Use of conditional entropy, various forms of use of polyhedral approximations.
- This is a very active research area right now.

MPE - most probable explanation

- In many cases, we care not to sum over x in $\sum_x p(x)$ but instead to compute $x^* \in \text{argmax}_{x \in D_X} p(x)$.
- This is called the “Viterbi assignment”, or the “most probable explanation” (MPE), or the “most probable configuration” or the “mode”, or a few other names.
- From the perspective of semirings, we are only changing the semiring (from sum-product to max-product). Can do exactly same form of exact inference algorithms (e.g., trees, k-trees, junction trees) using different semiring, to get answer. To get n-best answers, can also be seen as a semiring.
- Equally difficult when tree-width is large.
- Can the variational approach help in this case as well?
MPE - most probable explanation

- MPE again
\[
\arg\max_{x \in D_X^m} p(x) = \{x \in D_X^m : p_{\theta}(x) \geq p_{\theta}(y), \forall y \in D_X^m\} \tag{26}
\]

- Since we are using exponential family models, we have
\[
\arg\max_{x \in D_X^m} p(x) = \arg\max_{x \in D_X^m} \langle \theta, \phi(x) \rangle \tag{27}
\]
\[
\text{i.e., cumulant function isn’t required for computation.}
\]
- But it is related. Recall cumulant function
\[
A(\theta) = \log \int \exp \{\langle \theta, \phi(x) \rangle\} d\nu(x) \tag{28}
\]
\[
= \sup_{\mu \in \mathcal{M}} \{\langle \theta, \mu \rangle - A^*(\mu)\} \tag{29}
\]

MPE - and variational

- Considering \(p_{\theta}(x) = \exp \{\langle \theta, \phi(x) \rangle - A(\theta)\} \).
- Let \(\beta \in \mathbb{R}_+ \) be a positive scalar.
- If we substitute \(\theta \) with \(\beta \theta \) (i.e., \(p_{\theta}(x) \) with \(p_{\beta \theta}(x) \)), then \(b_{\beta \theta}(x) \) becomes more concentrated around MPE solutions as \(\beta \to \infty \).
- This should have some influence on the cumulant. I.e., if we look at \(A(\beta \theta) / \beta \) and let \(\beta \) get large.
- Moreover, with respect to mean parameters, the maximum mean should (intuitively) fall on a vertex.
We have following theorem.

Theorem 4

For all $\theta \in \Omega$, *the problem of mode computation has the following alternative representations:*

$$\max_{x \in D_{X^m}} \langle \theta, \phi(x) \rangle = \max_{\mu \in \mathcal{M}} \langle \theta, \mu \rangle, \text{ and}$$

$$\max_{x \in D_{X^m}} \langle \theta, \phi(x) \rangle = \lim_{\beta \to \infty} \frac{A(\beta \theta)}{\beta} \quad (31)$$

- First equation shows how MPE can be seen as a LP over convex set \mathcal{M}.
- For discrete distributions, we have $\mathcal{M}(G)$ for graph G, so this is a linear objective with polyhedral constraints.
- Since l.h.s. is IP, this shows the difficulty of $\mathcal{M}(G)$.

MPE - and variational for trees

- When the graph is a tree, we can find an interesting connection between the max-product form of messages and a particular Lagrangian.
- Using the above theorem, we get (for tree T)

$$\max_{x \in D_{X^m}} \left[\sum_{s \in V} \theta_s(x_s) + \sum_{(s,t) \in E} \theta_{st}(x_s, x_t) \right] = \max_{\mu \in \mathcal{L}(T)} \langle \mu, \theta \rangle \quad (32)$$

- Right hand side is a LP over a simple polytope, the marginal polytope for trees $\mathcal{L}(T)$.
- It turns out that: the max-product updates are a Lagrangian method for solving dual of the above linear program.
- Maxproduct updates take the form:

$$M_{t \to s}(x_s) \leftarrow \kappa \max_{x_t \in D_{X_t}} \left[\exp \left\{ \theta_{st}(x_s, x_t) + \theta_t(x_t) \right\} \prod_{u \in N(t) \setminus s} M_{u \to t}(x_t) \right] \quad (33)$$
Max-Product and LP Duality

Theorem 5

Max-product and LP Duality Consider the dual function Q defined by the following partial Lagrangian formulation of the tree-structured LP:

$$Q(\lambda) = \max_{\mu \in \mathbb{N}} L(\mu; \lambda), \quad \text{where}$$

$$L(\mu; \lambda) = \langle \theta, \mu \rangle + \sum_{(s,t) \in E(T)} \left[\sum_{x_s} \lambda_{ts}(x_s)C_{ts}(x_s) + \sum_{x_t} \lambda_{st}(x_t)C_{st}(x_t) \right]$$

(35)

For any fixed point M^* of the max-product updates, the vector $\lambda^* = \log M^*$, where the logarithm is taken elementwise, is an optimal solution of the dual problem $\min_{\lambda} Q(\lambda)$.

Scratch Paper
Sources for Today’s Lecture

- this material comes from the Wainwright and Jordan book.