Announcements

- Read chapters 1, 2, and 3 in this book. Start reading chapter 4.
- Assignment due Wednesday (Nov 12th) night, 11:45pm. Non-binding final project proposals (one page max).
Class Road Map - EE512a

- L1 (9/29): Introduction, Families, Semantics
- L2 (10/1): MRFs, elimination, Inference on Trees
- L3 (10/6): Tree inference, message passing, more general queries, non-tree
- L4 (10/8): Non-trees, perfect elimination, triangulated graphs
- L5 (10/13): triangulated graphs, \(k \)-trees, the triangulation process/heuristics
- L6 (10/15): multiple queries, decomposable models, junction trees
- L7 (10/20): junction trees, begin intersection graphs
- L8 (10/22): intersection graphs, inference on junction trees
- L9 (10/27): inference on junction trees, semirings,
- L10 (11/3): conditioning, hardness, LBP
- L11 (11/5): LBP, exponential models,
- L13 (11/10): exponential models, mean params and polytopes, tree outer bound
- L14 (11/12):
- L15 (11/17):
- L16 (11/19):
- L17 (11/24):
- L18 (11/26):
- L19 (12/1):
- L20 (12/3):
- Final Presentations: (12/10):

Finals Week: Dec 8th-12th, 2014.
Theorem 12.2.1 (Power method lemma)

Let A be a matrix with eigenvalues $\lambda_1, \ldots, \lambda_n$ (sorted in decreasing order) and corresponding eigenvectors x_1, x_2, \ldots, x_n. If $|\lambda_1| > |\lambda_2|$ (strict), then the update $x^{t+1} = \alpha A x^t$ converges to a multiple of x_1 starting from any initial vector $x^0 = \sum_i \beta_i x_i$ provided that $\beta_1 \neq 0$. The convergence rate factor is given by $|\lambda_2/\lambda_1|$.
From this, we the following theorem follows almost immediately.

Theorem 12.2.1

1. $\mu_\ell \rightarrow 1$ converges to the principle eigenvector of M.
2. $\mu_2 \rightarrow 1$ converges to the principle eigenvector of M^T.
3. The convergence rate is determined by the ratio of the largest and second largest eigenvalue of M.
4. The diagonal elements of M correspond to correct marginal $p(x_1)$
5. The steady state “pseudo-marginal” $b(x_1)$ is related to the true marginal by $b(x_1) = \beta p(x_1) + (1 - \beta)q(x_1)$ where β is the ratio of the largest eigenvalue of M to the sum of all eigenvalues, and $q(x_1)$ depends on the eigenvectors of M.

Proof.

See Weiss2000.
exponential family models

- $\phi = (\phi_\alpha, \alpha \in \mathcal{I})$ is a collection of functions known as potential functions, sufficient statistics, or features. \mathcal{I} is an index set of size $d = |\mathcal{I}|$.

- Each ϕ_α is a function of x, $\phi_\alpha(x)$ but it usually does not use all of x (only a subset of elements). Notation $\phi_\alpha(x_{C_\alpha})$ assumed implicitly understood, where $C_\alpha \subseteq V(G)$.

- θ is a vector of canonical parameters (same length, $|\mathcal{I}|$). $\theta \in \Omega \subseteq \mathbb{R}^d$ where $d = |\mathcal{I}|$.

- We can define a family as

\[
p_\theta(x) = \exp(\langle \theta, \phi(x) \rangle - A(\theta))
\]

(12.12)

where $\langle \theta, \phi(x) \rangle = \sum_\alpha \theta_\alpha \phi_\alpha(x)$. Note that we’re using ϕ here in the exponent, before we were using it out of the exponent.

- Note that $\phi(x) = (\phi_1(x), \phi_2(x), \ldots, \phi_{|\mathcal{I}|})$ where again each $\phi_i(x)$ might use only some of the elements in vector x. $\phi : D_X^m \rightarrow \mathbb{R}^d$.
Log partition (cumulant) function

Based on underlying set of parameters θ, we have family of models

$$p_{\theta}(x) = \frac{1}{Z(\theta)} \exp \left\{ \sum_{\alpha \in \mathcal{I}} \theta_\alpha \phi_\alpha(x) \right\} = \exp(\langle \theta, \phi(x) \rangle - A(\theta)) \quad (12.12)$$

To ensure normalized, we use log partition (cumulant) function

$$A(\theta) = \log \int_{D_x} \exp(\langle \theta, \phi(x) \rangle) \nu(dx) \quad (12.13)$$

with $\theta \in \Omega^\Delta = \{ \theta \in \mathbb{R}^d | A(\theta) < +\infty \}$

- $A(\theta)$ is convex function of θ, so Ω is convex.
- Exponential family for which Ω is open is called *regular*
Maximum entropy estimation

- Goal ("estimation", or "machine learning") is to find

 $$p^* \in \text{argmax}_{p \in U} H(p) \text{ s.t. } \mathbb{E}_p[\phi_\alpha(X)] = \hat{\mu}_\alpha \ \forall \alpha \in \mathcal{I} \quad (12.14)$$

 where $H(p) = -\int p(x) \log p(x) \nu(dx)$, and $\forall \alpha \in \mathcal{I}$

 $$\mathbb{E}_p[\phi_\alpha(X)] = \int_{\mathcal{D}_X} \phi_\alpha(x) p(x) \nu(dx). \quad (12.15)$$

- $\mathbb{E}_p[\phi_\alpha(X)]$ is mean value as measured by potential function, so above is a form of moment matching.

- Maximum entropy (MaxEnt) distribution is solved by taking distribution in form of $p_\theta(x) = \exp(\langle \theta, \phi(x) \rangle - A(\theta))$ and then by finding canonical parameters θ that solves

 $$\mathbb{E}_{p_\theta}[\phi_\alpha(X)] = \hat{\mu}_\alpha \text{ for all } \alpha \in \mathcal{I}. \quad (12.16)$$
Maximum entropy solution

Solution to maxent problem

\[p^* \in \arg\max_{p \in \mathcal{U}} H(p) \text{ s.t. } \mathbb{E}_p[\phi_\alpha(X)] = \hat{\mu}_\alpha \ \forall \alpha \in \mathcal{I} \]

(12.14)

has the form of an exponential model:

\[p_\theta(x) = \exp(\langle \theta, \phi(x) \rangle - A(\theta)) \]

(12.15)

where \(A(\theta) = \log \int_{D_x} \exp(\langle \theta, \phi(x) \rangle) \nu(dx) \)

(12.16)

Exercise: show that solution to Eqn (??) has this form.
Minimal Representation of Exponential Family

- Minimal representation - Does not exist a nonzero vector $\gamma \in \mathbb{R}^d$ for which $\langle \gamma, \phi(x) \rangle$ is constant $\forall x$ (that are ν-measurable).
- I.e., guarantee that, for all non-zero $\gamma \in \mathbb{R}^d$, there exists $x_1 \neq x_2$, with $\nu(x_1), \nu(x_2) > 0$, such that $\langle \gamma, \phi(x_1) \rangle \neq \langle \gamma, \phi(x_2) \rangle$.
- Essential idea: that for a set of sufficient stats \mathcal{I}, there is not a lower-dimensional vector $|\mathcal{I}'| < |\mathcal{I}|$ that is also sufficient (a min suf stat is a function of all other suf stats).
- We can’t reduce the dimensionality d without changing the family.
Overcomplete Representation

\[p_\theta(x) = \exp(\langle \theta, \phi(x) \rangle - A(\theta)) \] \hspace{1cm} (12.14)

where \(A(\theta) = \log \int_{D_X} \exp (\langle \theta, \phi(x) \rangle) \nu(dx) \) \hspace{1cm} (12.15)

- Overcomplete representation \(d = |I| \) higher than need be
- I.e., \(\exists \gamma \neq 0 \) s.t. \(\langle \gamma, \phi(x) \rangle = c, \forall x \) where \(c = \text{constant} \).
- I.e., Exists affine hyperplane of different parameters that induce exactly same distribution. Assume overcomplete, given \(\gamma \neq 0 \) s.t., \(\langle \gamma, \phi(x) \rangle = c \) and some other parameters \(\theta \), we have, we have

\[p_{\theta+\gamma}(x) = \exp(\langle (\theta + \gamma), \phi(x) \rangle - A(\theta + \gamma)) \] \hspace{1cm} (12.16)

\[= \exp(\langle \theta, \phi(x) \rangle + \langle \gamma, \phi(x) \rangle - A(\theta + \gamma)) \] \hspace{1cm} (12.17)

\[= \exp(\langle \theta, \phi(x) \rangle + c - A(\theta + \gamma)) \] \hspace{1cm} (12.18)

\[= \exp(\langle \theta, \phi(x) \rangle - A(\theta)) = p_\theta(x) \] \hspace{1cm} (12.19)

- True for any \(\lambda \gamma \) with \(\lambda \in \mathbb{R} \), so affine set of identical distributions!
- We’ll see later, this useful in understanding BP algorithm.
Exponential family models

- Minimal representation of Bernoulli distribution is

\[p(x|\gamma) = \exp(\gamma x - A(\gamma)) \] \hspace{1cm} (12.1)

So \[p(X = 1) = 1 - p(X = 0) = \exp(\gamma - A(\gamma)) \] and
\[p(X = 0) = \exp(-A(\gamma)). \]
Exponential family models

- Minimal representation of Bernoulli distribution is
 \[p(x|\gamma) = \exp(\gamma x - A(\gamma)) \]

So \(p(X = 1) = 1 - p(X = 0) = \exp(\gamma - A(\gamma)) \) and

\(p(X = 0) = \exp(-A(\gamma)). \)

- Overcomplete rep of Bernoulli dist.
 \[p(x|\theta_0, \theta_1) = \exp(\langle \theta, \phi(x) \rangle) \]
 \[= \exp(\theta_0(1-x) + \theta_1 x - A(\gamma)) \]

where \(\theta = (\theta_0, \theta_1) \) and \(\phi(x) = (1-x, x). \)
Exponential family models

- Minimal representation of Bernoulli distribution is
 \[p(x|\gamma) = \exp(\gamma x - A(\gamma)) \] (12.1)

 So \(p(X = 1) = 1 - p(X = 0) = \exp(\gamma - A(\gamma)) \) and
 \(p(X = 0) = \exp(-A(\gamma)) \).

- Overcomplete rep of Bernoulli dist.
 \[p(x|\theta_0, \theta_1) = \exp(\langle \theta, \phi(x) \rangle) \] (12.2)
 \[= \exp(\theta_0(1 - x) + \theta_1 x - A(\gamma)) \] (12.3)

 where \(\theta = (\theta_0, \theta_1) \) and \(\phi(x) = (1 - x, x) \).

- Is there a non-zero vector \(a \) s.t. \(\langle a, \phi(x) \rangle = c \) for all \(x, \nu\text{-a.e.} \)?
Exponential family models

- Minimal representation of Bernoulli distribution is
 \[p(x|\gamma) = \exp(\gamma x - A(\gamma)) \] (12.1)

 So \(p(X = 1) = 1 - p(X = 0) = \exp(\gamma - A(\gamma)) \) and \(p(X = 0) = \exp(-A(\gamma)) \).

- Overcomplete rep of Bernoulli dist.
 \[p(x|\theta_0, \theta_1) = \exp(\langle \theta, \phi(x) \rangle) \] (12.2)
 \[= \exp(\theta_0(1 - x) + \theta_1 x - A(\gamma)) \] (12.3)

 where \(\theta = (\theta_0, \theta_1) \) and \(\phi(x) = (1 - x, x) \).

- Is there a non-zero vector \(a \) s.t. \(\langle a, \phi(x) \rangle = c \) for all \(x, \nu\text{-a.e.} \)?

- If \(a = (1, 1) \) then \(\langle a, \phi(x) \rangle = (1 - x) + x = 1 \)
Exponential family models

- **Minimal representation of Bernoulli distribution is**

\[
p(x|\gamma) = \exp(\gamma x - A(\gamma))
\]

(12.1)

So \(p(X = 1) = 1 - p(X = 0) = \exp(\gamma - A(\gamma)) \) and \(p(X = 0) = \exp(-A(\gamma)) \).

- **overcomplete rep of Bernoulli dist.**

\[
p(x|\theta_0, \theta_1) = \exp(\langle \theta, \phi(x) \rangle)
\]

(12.2)

\[
= \exp(\theta_0(1 - x) + \theta_1 x - A(\gamma))
\]

(12.3)

where \(\theta = (\theta_0, \theta_1) \) and \(\phi(x) = (1 - x, x) \).

- **Is there a non-zero vector \(a \) s.t. \(\langle a, \phi(x) \rangle = c \) for all \(x, \nu\text{-a.e.} \)?**

- **If \(a = (1, 1) \) then \(\langle a, \phi(x) \rangle = (1 - x) + x = 1 \)**

- **This is overcomplete since there is a linear combination of feature functions that are constant.**
Exponential family models

- Minimal representation of Bernoulli distribution is

\[p(x|\gamma) = \exp(\gamma x - A(\gamma)) \]

(12.1)

So \(p(X = 1) = 1 - p(X = 0) = \exp(\gamma - A(\gamma)) \) and \(p(X = 0) = \exp(-A(\gamma)) \).

- Overcomplete rep of Bernoulli dist.

\[
p(x|\theta_0, \theta_1) = \exp(\langle \theta, \phi(x) \rangle - A(\theta))
\]

\[= \exp(\theta_0(1 - x) + \theta_1 x - A(\gamma)) \]

(12.2)

(12.3)

where \(\theta = (\theta_0, \theta_1) \) and \(\phi(x) = (1 - x, x) \).

- Is there a non-zero vector \(a \) s.t. \(\langle a, \phi(x) \rangle = c \) for all \(x, \nu\)-a.e.?

- If \(a = (1, 1) \) then \(\langle a, \phi(x) \rangle = (1 - x) + x = 1 \)

- This is overcomplete since there is a linear combination of feature functions that are constant.

- Since \(\theta_0(1 - x) + \theta_1 x = \theta_0 + x(\theta_1 - \theta_0) \), any parameters \(\theta_1, \theta_2 \) such that \(\theta_1 - \theta_0 = \gamma \) gives same distribution determined by \(\gamma \).
Famous Example - Ising Model

Famous example is the Ising model in statistical physics. We have a grid network with pairwise interactions, each variable is 0/1-valued binary, and parameters associated with pairs being both on. Model becomes

\[p_\theta(x) = \exp \left\{ \sum_{v \in V} \theta_v x_v + \sum_{(s,t) \in E} \theta_{st} x_s x_t - A(\theta) \right\}, \] (12.4)

with

\[A(\theta) = \log \sum_{x \in \{0,1\}^m} \exp \left\{ \sum_{v \in V} \theta_v x_v + \sum_{(s,t) \in E} \theta_{st} x_s x_t - \right\} \] (12.5)

Note that this is in minimal form. Any change to parameters will result in different distribution.
Ising Model and Immediate Generalization

- Note, in this case \mathcal{I} is all singletons (unaries) and all pairs, so that
 \[\{C_\alpha\}_\alpha = \left\{ \{x_i\}_i, \{x_ix_j\}_{(i,j) \in E} \right\}. \]

- We can easily generalize this via a set system. I.e., consider (V, \mathcal{V}), where $\mathcal{V} = \{V_1, V_2, \ldots, V_{|\mathcal{V}|}\}$ and where $\forall i, V_i \subseteq V$.

- We can form sufficient statistic set via
 \[\{C_\alpha\}_\alpha = \{\{x_{V}\}_{V \in \mathcal{V}}\}. \]

- Could have, for example that
 \[\phi_\alpha = \prod_{i \in C_\alpha} x_i. \]

- Hence, it is possible to generalize with higher order factors (which are also called “interaction functions”, “potential functions”, or “sufficient statistics”).
Multivalued variables

- Variables need not binary, instead $D_X = \{0, 1, \ldots, r-1\}$ for $r > 2$.

\begin{align*}
\text{Model becomes } p_{\theta}(x) &= e^{\sum_{v \in V} \sum_{i=0}^{r-1} \theta_{v;i} s_{v;i}(x_v) + \sum_{(s,t) \in E} \sum_{j,k} \theta_{st;ij} 1_{st;jk}(x_s, x_t) - \mathcal{A}(\theta)}.
\end{align*}
Multivalued variables

- Variables need not be binary, instead $D_X = \{0, 1, \ldots, r - 1\}$ for $r > 2$.
- We can define a set of indicator functions constituting sufficient statistics. That is

\[
1_{s;j}(x_s) = \begin{cases}
1 & \text{if } x_s = j \\
0 & \text{else}
\end{cases}
\]

(12.6)

and

\[
1_{st;jk}(x_s, x_t) = \begin{cases}
1 & \text{if } x_s = j \text{ and } x_t = k, \\
0 & \text{else}
\end{cases}
\]

(12.7)
Multivalued variables

- Variables need not binary, instead $D_X = \{0, 1, \ldots, r - 1\}$ for $r > 2$.
- We can define a set of indicator functions constituting sufficient statistics. That is

$$1_{s;j}(x_s) = \begin{cases}
1 & \text{if } x_s = j \\
0 & \text{else}
\end{cases} \quad (12.6)$$

and

$$1_{st;jk}(x_s, x_t) = \begin{cases}
1 & \text{if } x_s = j \text{ and } x_t = k, \\
0 & \text{else}
\end{cases} \quad (12.7)$$

- Model becomes

$$p_\theta(x) = \exp \left\{ \sum_{v \in V} \sum_{i=0}^{r-1} \theta_{v;j} 1_{s;j}(x_v) + \sum_{(s,t) \in E} \sum_{j,k} \theta_{st;i,j} 1_{st;jk}(x_s, x_t) - A(\theta) \right\} \quad (12.8)$$
Multivalued variables

- Variables need not be binary, instead $D_X = \{0, 1, \ldots, r - 1\}$ for $r > 2$.
- We can define a set of indicator functions constituting sufficient statistics. That is

$$1_{s;j}(x_s) = \begin{cases} 1 & \text{if } x_s = j \\ 0 & \text{else} \end{cases}$$ \hspace{1cm} (12.6)$$

and

$$1_{st;jk}(x_s, x_t) = \begin{cases} 1 & \text{if } x_s = j \text{ and } x_t = k, \\ 0 & \text{else} \end{cases}$$ \hspace{1cm} (12.7)$$

- Model becomes

$$p_\theta(x) = \exp \left\{ \sum_{v \in V} \sum_{i=0}^{r-1} \theta_{v;j} 1_{s;j}(x_v) + \sum_{(s,t) \in E} \sum_{j,k} \theta_{st;jk} 1_{st;jk}(x_s, x_t) - A(\theta) \right\}$$ \hspace{1cm} (12.8)$$

- Is this overcomplete?
Multivalued variables

- Variables need not binary, instead \(D_X = \{0, 1, \ldots, r - 1\} \) for \(r > 2 \).
- We can define a set of indicator functions constituting sufficient statistics. That is

\[
1_{s;j}(x_s) = \begin{cases}
1 & \text{if } x_s = j \\
0 & \text{else}
\end{cases}
\] (12.6)

and

\[
1_{st;jk}(x_s, x_t) = \begin{cases}
1 & \text{if } x_s = j \text{ and } x_t = k \\
0 & \text{else}
\end{cases}
\] (12.7)

- Model becomes

\[
p_\theta(x) = \exp \left\{ \sum_{v \in V} \sum_{i=0}^{r-1} \theta_{v;j} 1_{s;j}(x_v) + \sum_{(s,t) \in E} \sum_{j,k} \theta_{st;i,j} 1_{st;jk}(x_s, x_t) - A(\theta) \right\}
\] (12.8)

- Is this overcomplete? Yes. Why?
Usually, multivariate Gaussian is parameterized via mean and covariance matrix. For canonical exponential form, we use mean and correlation matrix. I.e.

$$p_\theta(x) = \exp \left\{ \langle \theta, x \rangle + \frac{1}{2} \langle \Theta, xx^\top \rangle - A(\theta, \Theta) \right\} \quad (12.9)$$
Multivariate Gaussian

- Usually, multivariate Gaussian is parameterized via mean and covariance matrix. For canonical exponential form, we use mean and correlation matrix. I.e.

\[
p_\theta(x) = \exp \left\{ \langle \theta, x \rangle + \frac{1}{2} \langle \Theta, xx^\top \rangle - A(\theta, \Theta) \right\}
\]

(12.9)

- \(\langle \Theta, xx^\top \rangle = \sum_{ij} \Theta_{ij} x_i x_j \) is Frobenius inner product.
Multivariate Gaussian

Usually, multivariate Gaussian is parameterized via mean and covariance matrix. For canonical exponential form, we use mean and correlation matrix. I.e.

\[
p_\theta(x) = \exp \left\{ \langle \theta, x \rangle + \frac{1}{2} \langle \Theta, xx^\top \rangle - A(\theta, \Theta) \right\}
\]

(12.9)

\[
\langle \Theta, xx^\top \rangle = \sum_{ij} \Theta_{ij} x_i x_j
\]
is Frobenius inner product.

So sufficient statistics are \((x_i)_{i=1}^n \) and \((x_i x_j)_{i,j} \).
Multivariate Gaussian

- Usually, multivariate Gaussian is parameterized via mean and covariance matrix. For canonical exponential form, we use mean and correlation matrix. I.e.

\[
p_\theta(x) = \exp \left\{ \langle \theta, x \rangle + \frac{1}{2} \langle \Theta, xx^T \rangle - A(\theta, \Theta) \right\}
\] (12.9)

- \[\langle \Theta, xx^T \rangle = \sum_{ij} \Theta_{ij} x_i x_j \] is Frobenius inner product.

- So sufficient statistics are \((x_i)_{i=1}^n\) and \((x_i x_j)_{i,j}\)

- \(\Theta_{s,t} = 0\) means identical to missing edge in corresponding graph (marginal independence). \(\Theta\) is negative inverse covariance matrix.
Multivariate Gaussian

- Usually, multivariate Gaussian is parameterized via mean and covariance matrix. For canonical exponential form, we use mean and correlation matrix. I.e.

\[
p_\theta(x) = \exp \left\{ \langle \theta, x \rangle + \frac{1}{2} \langle \Theta, xx^\top \rangle - A(\theta, \Theta) \right\}
\] (12.9)

- \[\langle \Theta, xx^\top \rangle = \sum_{ij} \Theta_{ij} x_i x_j\] is Frobenius inner product.
- So sufficient statistics are \((x_i)_{i=1}^n\) and \((x_i x_j)_{i,j}\)
- \(\Theta_{s,t} = 0\) means identical to missing edge in corresponding graph (marginal independence). \(\Theta\) is negative inverse covariance matrix.
- Any other constraints on \(\Theta\)?
Multivariate Gaussian

- Usually, multivariate Gaussian is parameterized via mean and covariance matrix. For canonical exponential form, we use mean and correlation matrix. i.e.

\[
p_\theta(x) = \exp \left\{ \langle \theta, x \rangle + \frac{1}{2} \langle \Theta, xx^\top \rangle - A(\theta, \Theta) \right\}
\]

(12.9)

- \(\langle \Theta, xx^\top \rangle = \sum_{ij} \Theta_{ij} x_i x_j \) is Frobenius inner product.

- So sufficient statistics are \((x_i)_{i=1}^n \) and \((x_i x_j)_{i,j} \)

- \(\Theta_{s,t} = 0 \) means identical to missing edge in corresponding graph (marginal independence). \(\Theta \) is negative inverse covariance matrix.

- Any other constraints on \(\Theta \)? negative definite
Multivariate Gaussian

Usually, multivariate Gaussian is parameterized via mean and covariance matrix. For canonical exponential form, we use mean and correlation matrix. I.e.

\[
p_\theta(x) = \exp \left\{ \langle \theta, x \rangle + \frac{1}{2} \langle \Theta, xx^\top \rangle - A(\theta, \Theta) \right\} \tag{12.9}
\]

\[
\langle \Theta, xx^\top \rangle = \sum_{ij} \Theta_{ij} x_i x_j \text{ is Frobenius inner product.}
\]

So sufficient statistics are \((x_i)_{i=1}^n\) and \((x_ix_j)_{i,j}\)

\(\Theta_{s,t} = 0\) means identical to missing edge in corresponding graph (marginal independence). \(\Theta\) is negative inverse covariance matrix.

Any other constraints on \(\Theta\)? negative definite

Mixtures of Gaussians can also be parameterized in exponential form (but note, key is that it is the joint distribution \(p_{\theta_s(y_s, x_s)}\)).
Other examples

A few other examples in the book

- Mixture models
Other examples

A few other examples in the book

- Mixture models
- Latent Dirichlet Allocation, and general hierarchical Bayesian models.
 Key here is that it is for one expansion, not variable.
Other examples

A few other examples in the book

- Mixture models

- Latent Dirichlet Allocation, and general hierarchical Bayesian models. Key here is that it is for one expansion, not variable.

- Models with hard constraints, or having zero probabilities — key thing is to place the hard constraints in the ν measure. Sufficient statistics become easy if complexity is encoded in the measure. Alternative is to allow features over extended reals (i.e., a feature can provide $-\infty$ but this leads to certain technical difficulties that they would rather not deal with).
Consider quantities μ_α associated with statistic ϕ_α defined as:

\[
\mu_\alpha = \mathbb{E}_p[\phi_\alpha(X)] = \int \phi_\alpha(x)p(x)\nu(dx) \quad (12.10)
\]
Mean Parameters, Convex Cores

- Consider quantities μ_α associated with statistic ϕ_α defined as:

$$\mu_\alpha = \mathbb{E}_p[\phi_\alpha(X)] = \int \phi_\alpha(x)p(x)\nu(dx) \quad (12.10)$$

- this defines a vector of "mean parameters" $(\mu_1, \mu_2, \ldots, \mu_d)$ with $d = |\mathcal{I}|$.

Prof. Jeff Bilmes
EE512a/Fall 2014/Graphical Models - Lecture 12 - Nov 10th, 2014
F18/64 (pg.36/185)
Consider quantities μ_α associated with statistic ϕ_α defined as:

$$
\mu_\alpha = \mathbb{E}_p[\phi_\alpha(X)] = \int \phi_\alpha(x)p(x)\nu(dx)
$$

(12.10)

this defines a vector of “mean parameters” $(\mu_1, \mu_2, \ldots, \mu_d)$ with $d = |\mathcal{I}|$.

Define all the possible such vectors

$$
\mathcal{M}(\phi) = \mathcal{M} \overset{\Delta}{=} \{ \mu \in \mathbb{R}^d : \exists p \text{ s.t. } \mu_\alpha = \mathbb{E}_p[\phi_\alpha(X)], \forall \alpha \in \mathcal{I} \}
$$

(12.11)
Mean Parameters, Convex Cores

- Consider quantities μ_α associated with statistic ϕ_α defined as:

 $$\mu_\alpha = \mathbb{E}_p[\phi_\alpha(X)] = \int \phi_\alpha(x)p(x)\nu(dx) \quad (12.10)$$

- This defines a vector of “mean parameters” $(\mu_1, \mu_2, \ldots, \mu_d)$ with $d = |\mathcal{I}|$.

- Define all the possible such vectors

 $$\mathcal{M}(\phi) = \mathcal{M} \triangleq \left\{ \mu \in \mathbb{R}^d : \exists p \text{ s.t. } \mu_\alpha = \mathbb{E}_p[\phi_\alpha(X)], \forall \alpha \in \mathcal{I} \right\} \quad (12.11)$$

- We don’t say p was necessarily exponential family
Consider quantities μ_α associated with statistic ϕ_α defined as:

$$\mu_\alpha = \mathbb{E}_p[\phi_\alpha(X)] = \int \phi_\alpha(x)p(x)\nu(dx)$$ \hspace{1cm} (12.10)

this defines a vector of “mean parameters” $(\mu_1, \mu_2, \ldots, \mu_d)$ with $d = |\mathcal{I}|$.

Define all the possible such vectors

$$\mathcal{M}(\phi) = \mathcal{M} \triangleq \left\{ \mu \in \mathbb{R}^d : \exists p \text{ s.t. } \mu_\alpha = \mathbb{E}_p[\phi_\alpha(X)], \forall \alpha \in \mathcal{I} \right\}$$ \hspace{1cm} (12.11)

We don’t say p was necessarily exponential family

\mathcal{M} is convex since expected value is a linear operator. So convex combinations of p and p' will lead to convex combinations of μ and μ'

Mean Parameters, Convex Cores
Consider quantities μ_α associated with statistic ϕ_α defined as:

$$\mu_\alpha = \mathbb{E}_p[\phi_\alpha(X)] = \int \phi_\alpha(x)p(x)\nu(dx) \quad (12.10)$$

this defines a vector of “mean parameters” $(\mu_1, \mu_2, \ldots, \mu_d)$ with $d = |\mathcal{I}|$.

Define all the possible such vectors

$$\mathcal{M}(\phi) = \mathcal{M} \triangleq \left\{ \mu \in \mathbb{R}^d : \exists p \text{ s.t. } \mu_\alpha = \mathbb{E}_p[\phi_\alpha(X)], \forall \alpha \in \mathcal{I} \right\} \quad (12.11)$$

We don’t say p was necessarily exponential family

\mathcal{M} is convex since expected value is a linear operator. So convex combinations of p and p' will lead to convex combinations of μ and μ'

\mathcal{M} is like a “convex core” of all distributions expressed via ϕ.
Here, we have $\mathbb{E}[XX^\top] = C$ and $\mu = \mathbb{E}X$. Question is, how to define M?

Given definition of C and μ, then $C - \mu\mu^\top$ must be valid covariance matrix (since this is $\mathbb{E}[X - \mathbb{E}X][X - \mathbb{E}X]^\top = C - \mu\mu^\top$).

Thus, $C - \mu\mu^\top \succeq 0$, thus p.s.d. matrix.

On the other hand, if this is true, we can form a Gaussian using $C - \mu\mu^\top$ as the covariance matrix.

Thus, for Gaussian MRFs, M has the form

$$M = \{(\mu, C) \in \mathbb{R}^m \times S_+^m | C - \mu\mu^\top \succeq 0\} \quad (12.12)$$

where S_+^m is the set of symmetric positive semi-definite matrices.
“Illustration of the set \mathcal{M} for a scalar Gaussian: the model has two mean parameters $\mu = \mathbb{E}[X]$ and $\Sigma_{11} = \mathbb{E}[X^2]$, which must satisfy the quadratic constraint $\Sigma_{11} - \mu^2 \geq 0$. Notice that \mathcal{M} is convex, which is a general property.” but is not a polytope.
Mean Parameters and Gaussians

- "Illustration of the set \mathcal{M} for a scalar Gaussian: the model has two mean parameters $\mu = \mathbb{E}[X]$ and $\Sigma_{11} = \mathbb{E}[X^2]$, which must satisfy the quadratic constraint $\Sigma_{11} - \mu^2 \geq 0$. Notice that \mathcal{M} is convex, which is a general property." but is not a polytope.

- Also, don’t confuse the "mean parameters" with the means of a Gaussian. The typical means of Gaussians are means in this new sense, but those means are not all of the means. 😊
Mean Parameters and Polytopes

- When X is discrete, we get a polytope since

$$
\mathcal{M} = \left\{ \mu \in \mathbb{R}^b : \mu = \sum_x \phi(x)p(x) \text{ for some } p \in \mathcal{U} \right\} \quad (12.13)
$$

$$
= \text{conv} \{ \phi(x), x \in D_X \text{ (that are } \nu\text{-measurable)}, \}
$$

where $\text{conv} \{ \cdot \}$ is the convex hull of the items in argument set.
Mean Parameters and Polytopes

- When X is discrete, we get a polytope since

$$
\mathcal{M} = \left\{ \mu \in \mathbb{R}^b : \mu = \sum_x \phi(x)p(x) \text{ for some } p \in \mathcal{U} \right\} \tag{12.13}
$$

$$
= \text{conv} \{ \phi(x), x \in D_X \text{ (that are } \nu\text{-measurable)}, \} \tag{12.14}
$$

where $\text{conv} \{ \cdot \}$ is the convex hull of the items in argument set.

- So we have a convex polytope
Mean Parameters and Polytopes

- Polytopes can be represented as a set of linear inequalities, i.e., there is a $|J| \times d$ matrix A and $|J|$-element column vector b with

$$M = \left\{ \mu \in \mathbb{R}^d : A\mu \geq b \right\} = \left\{ \mu \in \mathbb{R}^d : \langle a_j, \mu \rangle \geq b_j, \forall j \in J \right\}$$

(12.15)

with A having rows a_j.

![Diagram of a polytope with inequalities](image_url)
Mean Parameters and Polytopes

Example: Ising mean parameters. Given sufficient statistics

$$\phi(x) = \{x_s, s \in V; x_s x_t, (s, t) \in E(G)\} \in \mathbb{R}^{|V|+|E|} \quad (12.16)$$

we get

$$\mu_v = \mathbb{E}_p[X_v] = p(X_v = 1) \quad \forall v \in V \quad (12.17)$$
$$\mu_{s,t} = \mathbb{E}_p[X_s X_t] = p(X_s = 1, X_t = 1) \quad \forall (s, t) \in E(G) \quad (12.18)$$
Example: Ising mean parameters. Given sufficient statistics

\[
\phi(x) = \{x_s, s \in V; x_s x_t, (s, t) \in E(G)\} \in \mathbb{R}^{|V|+|E|}
\]

we get

\[
\mu_v = \mathbb{E}_p[X_v] = p(X_v = 1) \quad \forall v \in V \tag{12.17}
\]
\[
\mu_{s,t} = \mathbb{E}_p[X_s X_t] = p(X_s = 1, X_t = 1) \quad \forall (s, t) \in E(G) \tag{12.18}
\]

Mean parameters lie in a polytope that represent the probabilities of a node being 1 or a pair of adjacent nodes being 1, 1 for each node and edge in the graph = \(\text{conv} \{\phi(x), x \in \{0, 1\}^m\}\).
Mean Parameters and Polytopes

- Example: Ising mean parameters. Given sufficient statistics

\[\phi(x) = \{ x_s, s \in V; x_s x_t, (s, t) \in E(G) \} \in \mathbb{R}^{|V|+|E|} \] (12.16)

we get

\[\mu_v = \mathbb{E}_p[X_v] = p(X_v = 1) \quad \forall v \in V \] (12.17)
\[\mu_{s,t} = \mathbb{E}_p[X_s X_t] = p(X_s = 1, X_t = 1) \quad \forall (s, t) \in E(G) \] (12.18)

- Mean parameters lie in a polytope that represent the probabilities of a node being 1 or a pair of adjacent nodes being 1, 1 for each node and edge in the graph = \(\text{conv} \{ \phi(x), x \in \{0, 1\}^m \} \).

- Gives complete marginal since \(p_s(1) = 1 - p_s(0), \)
\(p_{s,t}(1, 0) = p_s(1) - p_{s,t}(1, 1), \)
\(p_{s,t}(0, 1) = p_t(1) - p_{s,t}(1, 1), \) etc.
Mean Parameters and Polytopes

- Example: Ising mean parameters. Given sufficient statistics

\[\phi(x) = \{ x_s, s \in V ; x_s x_t, (s, t) \in E(G) \} \in \mathbb{R}^{|V|+|E|} \] \hspace{1cm} (12.16)

we get

\[\mu_v = \mathbb{E}_p[X_v] = p(X_v = 1) \hspace{0.5cm} \forall v \in V \] \hspace{1cm} (12.17)
\[\mu_{s,t} = \mathbb{E}_p[X_s X_t] = p(X_s = 1, X_t = 1) \hspace{0.5cm} \forall (s, t) \in E(G) \] \hspace{1cm} (12.18)

- Mean parameters lie in a polytope that represent the probabilities of a node being 1 or a pair of adjacent nodes being 1, 1 for each node and edge in the graph = \text{conv} \{ \phi(x), x \in \{0, 1\}^m \}.

- Gives complete marginal since \(p_s(1) = 1 - p_s(0), \)
 \(p_{s,t}(1, 0) = p_s(1) - p_{s,t}(1, 1), \) \(p_{s,t}(0, 1) = p_t(1) - p_{s,t}(1, 1), \) etc.

- Recall: marginals are often the goal of inference.
Mean Parameters and Polytopes

- Example: Ising mean parameters. Given sufficient statistics

\[\phi(x) = \{ x_s, s \in V; x_s x_t, (s, t) \in E(G) \} \in \mathbb{R}^{|V|+|E|} \quad (12.16) \]

we get

\[\mu_v = \mathbb{E}_p[X_v] = p(X_v = 1) \quad \forall v \in V \quad (12.17) \]
\[\mu_{s,t} = \mathbb{E}_p[X_s X_t] = p(X_s = 1, X_t = 1) \quad \forall (s, t) \in E(G) \quad (12.18) \]

- Mean parameters lie in a polytope that represent the probabilities of a node being 1 or a pair of adjacent nodes being 1, 1 for each node and edge in the graph = \text{conv} \{ \phi(x), x \in \{0, 1\}^m \}.

- Gives complete marginal since \(p_s(1) = 1 - p_s(0) \), \(p_{s,t}(1, 0) = p_s(1) - p_{s,t}(1, 1) \), \(p_{s,t}(0, 1) = p_t(1) - p_{s,t}(1, 1) \), etc.

- Recall: marginals are often the goal of inference. Coincidence?
Example: 2-variable Ising

"Ising model with two variables \((X_1, X_2) \in \{0, 1\}^2\). Three mean parameters \(\mu_1 = \mathbb{E}[X_1], \mu_2 = \mathbb{E}[X_2], \mu_{12} = \mathbb{E}[X_2X_2]\), must satisfy constraints \(0 \leq \mu_{12} \leq \mu_i\) for \(i = 1, 2\), and \(1 + \mu_{12} - \mu_1 - \mu_2 \geq 0\). These constraints carve out a polytope with four facets, contained within the unit hypercube \([0, 1]^3\)."
Mean Parameters and Overcomplete Representation

- We can use overcomplete representation and get a “marginal polytope”, a polytope that represents the marginal distributions at each potential function.

- Example: Ising overcomplete potential functions (generalization of Bernoulli example we saw before)

\[
\forall v \in V(G), j \in \{0 \ldots r - 1\}, \text{ define } \phi_{v,j}(x_v) \triangleq 1(x_v = j) \tag{12.19}
\]

\[
\forall (s, t) \in E(G), j, k \in \{0 \ldots r - 1\}, \text{ we define: } \phi_{st,jk}(x_s, x_t) \triangleq 1(x_s = j, x_t = k) = 1(x_s = j)1(x_t = k) \tag{12.20}
\]

- So we now have \(|V|r + 2|E|r^2\) functions each with a corresponding parameter.
Mean Parameters and Marginal Polytopes

- Mean parameters are now true (fully specified) marginals, i.e.,
 \[\mu_v(j) = p(x_v = j) \quad \text{and} \quad \mu_{st}(j, k) = p(x_s = j, x_t = k) \]
 since
 \[
 \mu_{v,j} = \mathbb{E}_p[1(x_v = j)] = p(x_v = j) \quad \text{(12.22)}
 \]
 \[
 \mu_{st,jk} = \mathbb{E}_p[1(x_s = j, x_t = k)] = p(x_s = j, x_t = k) \quad \text{(12.23)}
 \]
- Such an \(\mathcal{M} \) is called the marginal polytope for discrete graphical models. Any \(\mu \) must live in the polytope that corresponds to node and edge true marginals.
- We can also associate such a polytope with a graph \(G \), where we take only \((s, t) \in E(G) \). Denote this as \(\mathcal{M}(G) \).
- This polytope can help us to characterize when BP converges (there might be an outer bound of this polytope), or it might characterize the result of a mean-field approximation (an inner bound of this polytope) as we’ll see.
Marginal Polytopes and Facet complexity

- Number of facets (faces) of a polytope is often (but not always) a good indication of its complexity.
Marginal Polytopes and Facet complexity

- Number of facets (faces) of a polytope is often (but not always) a good indication of its complexity.
- Corresponds to number of linear constraints in set of linear inequalities describing the polytope.
Marginal Polytope and Facet complexity

- Number of facets (faces) of a polytope is often (but not always) a good indication of its complexity.
- Corresponds to number of linear constraints in set of linear inequalities describing the polytope.
- “facet complexity” of M depends on the graph structure.
Marginal Polytopes and Facet complexity

- Number of facets (faces) of a polytope is often (but not always) a good indication of its complexity.
- Corresponds to number of linear constraints in set of linear inequalities describing the polytope.
- “facet complexity” of \mathcal{M} depends on the graph structure.
- For 1-trees, marginal polytope characterized by local constraints only (pairs of variables on edges of the tree) and has linear growth with graph size.
Marginal Polytopes and Facet complexity

- Number of facets (faces) of a polytope is often (but not always) a good indication of its complexity.
- Corresponds to number of linear constraints in set of linear inequalities describing the polytope.
- “facet complexity” of \mathcal{M} depends on the graph structure.
- For 1-trees, marginal polytope characterized by local constraints only (pairs of variables on edges of the tree) and has linear growth with graph size.
- For k-trees, complexity grows exponentially in k.
Marginal Polytopes and Facet complexity

- Number of facets (faces) of a polytope is often (but not always) a good indication of its complexity.
- Corresponds to number of linear constraints in set of linear inequalities describing the polytope.
- “Facet complexity” of \mathcal{M} depends on the graph structure.
- For 1-trees, marginal polytope characterized by local constraints only (pairs of variables on edges of the tree) and has linear growth with graph size.
- For k-trees, complexity grows exponentially in k.
- Key idea: use polyhedral approximations to produce model and inference approximations.
Learning is the dual of Inference

- We can view the inference problem as moving from the canonical parameters θ to the point in the marginal polytope, called forward mapping, moving from $\theta \in \Omega$ to $\mu \in \mathcal{M}$.
Learning is the dual of Inference

- We can view the inference problem as moving from the canonical parameters θ to the point in the marginal polytope, called forward mapping, moving from $\theta \in \Omega$ to $\mu \in \mathcal{M}$.

- We can view the (maximum likelihood) learning problem as moving from a point in the polytope (given by the empirical distribution) to the canonical parameters. Called backwards mapping.
Learning is the dual of Inference

- We can view the inference problem as moving from the canonical parameters θ to the point in the marginal polytope, called forward mapping, moving from $\theta \in \Omega$ to $\mu \in \mathcal{M}$.

- We can view the (maximum likelihood) learning problem as moving from a point in the polytope (given by the empirical distribution) to the canonical parameters. Called backwards mapping.

- Graph structure (e.g., tree-width) makes this easy or hard, and also characterizes the polytope (how complex it is in terms of number of faces).
Review: Maximum Entropy Estimation

The next slide is (again) a repeat from lecture 11.
Maximum entropy estimation

- Goal ("estimation", or "machine learning") is to find

\[p^* \in \arg \max_{p \in \mathcal{U}} H(p) \quad \text{s.t.} \quad \mathbb{E}_p[\phi_\alpha(X)] = \hat{\mu}_\alpha \quad \forall \alpha \in \mathcal{I} \tag{12.14} \]

where \(H(p) = -\int p(x) \log p(x) \nu(dx), \) and \(\forall \alpha \in \mathcal{I} \)

\[\mathbb{E}_p[\phi_\alpha(X)] = \int_{D_X} \phi_\alpha(x)p(x)\nu(dx). \tag{12.15} \]

- \(\mathbb{E}_p[\phi_\alpha(X)] \) is mean value as measured by potential function, so above is a form of moment matching.

- Maximum entropy (MaxEnt) distribution is solved by taking distribution in form of

\[p_\theta(x) = \exp(\langle \theta, \phi(x) \rangle - A(\theta)) \]

and then by finding canonical parameters \(\theta \) that solves

\[\mathbb{E}_{p_\theta}[\phi_\alpha(X)] = \hat{\mu}_\alpha \quad \text{for all} \quad \alpha \in \mathcal{I}. \tag{12.16} \]
Learning is the dual of Inference

- Ex: Estimate θ with $\hat{\theta}$ based on data $D = \{\bar{x}^{(i)}\}_{i=1}^M$ of size M, likelihood function

$$\ell(\theta, D) = \frac{1}{M} \sum_{i=1}^M \log p_\theta(\bar{x}^{(i)}) = \langle \theta, \hat{\mu} \rangle - A(\theta)$$ \hspace{1cm} (12.24)

where empirical means given by

$$\hat{\mu} = \hat{E}[\phi(X)] = \frac{1}{M} \sum_{i=1}^M \phi(\bar{x}^{(i)})$$ \hspace{1cm} (12.25)
Learning is the dual of Inference

- **Ex:** Estimate θ with $\hat{\theta}$ based on data $D = \{\bar{x}^{(i)}\}_{i=1}^{M}$ of size M.

 Likelihood function

 \[
 \ell(\theta, D) = \frac{1}{M} \sum_{i=1}^{M} \log p_{\theta}(\bar{x}^{(i)}) = \langle \theta, \hat{\mu} \rangle - A(\theta) \tag{12.24}
 \]

 where empirical means given by

 \[
 \hat{\mu} = \hat{E}[\phi(X)] = \frac{1}{M} \sum_{i=1}^{M} \phi(\bar{x}^{(i)}) \tag{12.25}
 \]

- By taking derivatives of the above, it is easy to see that solution is the point $\hat{\theta} = \theta(\hat{\mu})$ such that empirical matches expected means, or what are called the moment matching conditions:

 \[
 \hat{E}_{\theta}[\phi(X)] = \hat{\mu} \tag{12.26}
 \]

this is the the backward mapping problem, going from μ to θ.
Learning is the dual of Inference

- **Ex:** Estimate θ with $\hat{\theta}$ based on data $D = \{\bar{x}(i)\}_{i=1}^M$ of size M, likelihood function

$$\ell(\theta, D) = \frac{1}{M} \sum_{i=1}^{M} \log p_\theta(\bar{x}(i)) = \langle \theta, \hat{\mu} \rangle - A(\theta) \quad (12.24)$$

where empirical means given by

$$\hat{\mu} = \hat{E}[\phi(X)] = \frac{1}{M} \sum_{i=1}^{M} \phi(\bar{x}(i)) \quad (12.25)$$

- By taking derivatives of the above, it is easy to see that solution is the point $\hat{\theta} = \theta(\hat{\mu})$ such that empirical matches expected means, or what are called the moment matching conditions:

$$E_{\hat{\theta}}[\phi(X)] = \hat{\mu} \quad (12.26)$$

this is the the backward mapping problem, going from μ to θ.

- Here, maximum likelihood is identical to maximum entropy problem.
Likelihood and negative entropy

- Entropy definition again: \(H(p) = - \int p(x) \log p(x) \nu(dx) \)
Entropy definition again: $H(p) = -\int p(x) \log p(x) \nu(dx)$

Given data, $D = \{\bar{x}^{(i)}\}_{i=1}^{M}$, defines an empirical distribution

$$\hat{p}(x) = \frac{1}{M} \sum_{i=1}^{M} 1(x = \bar{x}^{(i)})$$

so that $\mathbb{E}_{\hat{p}}[\phi(X)] = \int \hat{p}(x) \phi(x) \nu(dx) = \frac{1}{M} \sum_{i=1}^{M} \phi(\bar{x}^{(i)}) = \hat{\mu}$

Thus, maximum likelihood value and negative entropy are identical, at least for empirical $\hat{\mu}$ (which is $\in M$).
Likelihood and negative entropy

- Entropy definition again: \(H(p) = -\int p(x) \log p(x) \nu(dx) \)
- Given data, \(D = \{x^{(i)}\}_{i=1}^{M} \), defines an empirical distribution

\[
\hat{p}(x) = \frac{1}{M} \sum_{i=1}^{M} 1(x = x^{(i)})
\]

(12.27)

so that \(\mathbb{E}_{\hat{p}}[\phi(X)] = \int \hat{p}(x) \phi(x) \nu(dx) = \frac{1}{M} \sum_{i=1}^{M} \phi(x^{(i)}) = \hat{\mu} \)

- Starting from maximum likelihood solution \(\theta(\hat{u}) \), meaning we are at moment matching conditions \(\mathbb{E}_{p(\hat{u})}[\phi(X)] = \hat{\mu} = \mathbb{E}_{\hat{p}}[\phi(X)] \), we have

\[
\ell(\theta(\hat{u}), D) = \langle \theta(\hat{u}), \hat{\mu} \rangle - A(\theta(\hat{u})) = \frac{1}{M} \sum_{i=1}^{M} \log p_{\theta(\hat{u})}(x^{(i)})
\]

(12.28)

\[
= \int \hat{p}(x) \log p_{\theta(\hat{\mu})}(x) \nu(dx) = \mathbb{E}_{\hat{p}}[\log p_{\theta(\hat{\mu})}(x)]
\]

(12.29)

\[
= -H_{\hat{p}}[p_{\theta(\hat{\mu})}(x)] = -H_{p_{\theta(\hat{\mu})}}[p_{\theta(\hat{\mu})}(x)]
\]

(12.30)
Entropy definition again: \(H(p) = -\int p(x) \log p(x) \nu(dx) \)

Given data, \(D = \{\bar{x}^{(i)}\}_{i=1}^M \), defines an empirical distribution

\[
\hat{p}(x) = \frac{1}{M} \sum_{i=1}^{M} 1(x = \bar{x}^{(i)})
\]

(12.27)

so that \(\mathbb{E}_{\hat{p}}[\phi(X)] = \int \hat{p}(x) \phi(x) \nu(dx) = \frac{1}{M} \sum_{i=1}^{M} \phi(\bar{x}^{(i)}) = \hat{\mu} \)

Starting from maximum likelihood solution \(\theta(\hat{u}) \), meaning we are at moment matching conditions \(\mathbb{E}_{p_{\theta(\hat{u})}}[\phi(X)] = \hat{\mu} = \mathbb{E}_{\hat{p}}[\phi(X)] \), we have

\[
\ell(\theta(\hat{u}), D) = \langle \theta(\hat{u}), \hat{\mu} \rangle - A(\theta(\hat{u})) = \frac{1}{M} \sum_{i=1}^{M} \log p_{\theta(\hat{u})}(\bar{x}^{(i)})
\]

(12.28)

\[
= \int \hat{p}(x) \log p_{\theta(\hat{u})}(x) \nu(dx) = \mathbb{E}_{\hat{p}}[\log p_{\theta(\hat{u})}(x)]
\]

(12.29)

\[
= -H_{\hat{p}}[p_{\theta(\hat{u})}(x)] = -H_{p_{\theta(\hat{u})}}[p_{\theta(\hat{u})}(x)]
\]

(12.30)

Thus, maximum likelihood value and negative entropy are identical, at least for empirical \(\hat{\mu} \) (which is \(\in \mathcal{M} \)).
Learning is the dual of Inference

- I.e., solution to the maximum likelihood problem is one that satisfies the moment constraints and has the exponential model form.
Learning is the dual of Inference

- I.e., solution to the maximum likelihood problem is one that satisfies the moment constraints and has the exponential model form.
- The exponential model form arises when we find the maximum entropy distribution over distributions satisfying the moment constraints.
Learning is the dual of Inference

- I.e., solution to the maximum likelihood problem is one that satisfies the moment constraints and has the exponential model form.
- The exponential model form arises when we find the maximum entropy distribution over distributions satisfying the moment constraints.
- Thus, maximum entropy learning under a set of constraints (given by \(\mathbb{E}_\theta[\phi(X)] = \hat{\mu} \)) is the same as maximum likelihood learning of an exponential model form.
Learning is the dual of Inference

- I.e., solution to the maximum likelihood problem is one that satisfies the moment constraints and has the exponential model form.
- The exponential model form arises when we find the maximum entropy distribution over distributions satisfying the moment constraints.
- Thus, maximum entropy learning under a set of constraints (given by $E_\theta[\phi(X)] = \hat{\mu}$) is the same as maximum likelihood learning of an exponential model form.
- If we do maximum entropy learning, where does the $\exp(\cdot)$ function come from?

From the entropy function. I.e., the exponential form is the distribution that has maximum entropy having those constraints.
Learning is the dual of Inference

- I.e., solution to the maximum likelihood problem is one that satisfies the moment constraints and has the exponential model form.
- The exponential model form arises when we find the maximum entropy distribution over distributions satisfying the moment constraints.
- Thus, maximum entropy learning under a set of constraints (given by $E_\theta[\phi(X)] = \hat{\mu}$) is the same as maximum likelihood learning of an exponential model form.
- If we do maximum entropy learning, where does the $\exp(\cdot)$ function come from? From the entropy function. I.e., the exponential form is the distribution that has maximum entropy having those constraints.
Summarizing these relationships

- **Forward mapping**: moving from \(\theta \in \Omega \) to \(\mu \in M \), this is the inference problem, getting the marginals.
Dual Mappings: Summary

Summarizing these relationships

- **Forward mapping**: moving from $\theta \in \Omega$ to $\mu \in \mathcal{M}$, this is the inference problem, getting the marginals.

- **Backwards mapping**: moving from $\mu \in \mathcal{M}$ to $\theta \in \Omega$, this is the learning problem, getting the parameters for a given set of empirical facts (means).
Summarizing these relationships

- **Forward mapping**: moving from $\theta \in \Omega$ to $\mu \in \mathcal{M}$, this is the inference problem, getting the marginals.

- **Backwards mapping**: moving from $\mu \in \mathcal{M}$ to $\theta \in \Omega$, this is the learning problem, getting the parameters for a given set of empirical facts (means).

- **In exponential family case**, this is maximum entropy and is equivalent to maximum likelihood learning on an exponential family model.
Summarizing these relationships

- **Forward mapping**: moving from $\theta \in \Omega$ to $\mu \in \mathcal{M}$, this is the inference problem, getting the marginals.

- **Backwards mapping**: moving from $\mu \in \mathcal{M}$ to $\theta \in \Omega$, this is the learning problem, getting the parameters for a given set of empirical facts (means).

- In exponential family case, this is maximum entropy and is equivalent to maximum likelihood learning on an exponential family model.

- **Turns out** log partition function A, and its dual A^* can give us these mappings, and the mappings have interesting forms . . .
Log partition (or cumulant) function

\[A(\theta) = \log \int_{D_X} \exp \langle \theta, \phi(x) \rangle \nu(dx) \] (12.31)

- If we know the log partition function, we know a lot for an exponential family model. In particular, we know
Log partition (or cumulant) function

\[A(\theta) = \log \int_{D_X} \exp \langle \theta, \phi(x) \rangle \nu(dx) \] (12.31)

- If we know the log partition function, we know a lot for an exponential family model. In particular, we know
- \(A(\theta) \) is convex in \(\theta \) (strictly so if minimal representation).
Log partition (or cumulant) function

\[A(\theta) = \log \int_{D_X} \exp \langle \theta, \phi(x) \rangle \nu(dx) \]
(12.31)

- If we know the log partition function, we know a lot for an exponential family model. In particular, we know
- \(A(\theta) \) is convex in \(\theta \) (strictly so if minimal representation).
- It yields cumulants of the random vector \(\phi(X) \)

\[\frac{\partial A}{\partial \theta_\alpha}(\theta) = E_\theta[\phi_\alpha(X)] = \int \phi_\alpha(X)p_\theta(x)\nu(dx) = \mu_\alpha \]
(12.32)

in general, derivative of log part. function is expected value of feature
Log partition (or cumulant) function

\[A(\theta) = \log \int_{D_X} \exp \langle \theta, \phi(x) \rangle \nu(dx) \]

(12.31)

- If we know the log partition function, we know a lot for an exponential family model. In particular, we know
- \(A(\theta) \) is convex in \(\theta \) (strictly so if minimal representation).
- It yields cumulants of the random vector \(\phi(X) \)

\[\frac{\partial A}{\partial \theta_\alpha}(\theta) = \mathbb{E}_\theta[\phi_\alpha(X)] = \int \phi_\alpha(X)p_\theta(x)\nu(dx) = \mu_\alpha \]

(12.32)

in general, derivative of log part. function is expected value of feature

- Also, we get

\[\frac{\partial^2 A}{\partial \theta_{\alpha_1} \partial \theta_{\alpha_2}}(\theta) = \mathbb{E}_\theta[\phi_{\alpha_1}(X)\phi_{\alpha_2}(X)] - \mathbb{E}_\theta[\phi_{\alpha_1}(X)]\mathbb{E}_\theta[\phi_{\alpha_2}(X)] \]

(12.33)
Log partition (or cumulant) function

\[A(\theta) = \log \int_{D_X} \exp \langle \theta, \phi(x) \rangle \nu(dx) \]
\[(12.31) \]

- If we know the log partition function, we know a lot for an exponential family model. In particular, we know
- \(A(\theta) \) is convex in \(\theta \) (strictly so if minimal representation).
- It yields cumulants of the random vector \(\phi(X) \)

\[
\frac{\partial A}{\partial \theta_\alpha}(\theta) = \mathbb{E}_\theta[\phi_\alpha(X)] = \int \phi_\alpha(X)p_\theta(x)\nu(dx) = \mu_\alpha
\]
\[(12.32) \]

in general, derivative of log part. function is expected value of feature

- Also, we get

\[
\frac{\partial^2 A}{\partial \theta_{\alpha_1} \partial \theta_{\alpha_2}}(\theta) = \mathbb{E}_\theta[\phi_{\alpha_1}(X)\phi_{\alpha_2}(X)] - \mathbb{E}_\theta[\phi_{\alpha_1}(X)]\mathbb{E}_\theta[\phi_{\alpha_2}(X)]
\]
\[(12.33) \]

So derivative of log partition function w.r.t. θ is equal to our mean parameter μ in the discrete case.

Given $A(\theta)$, we can recover the marginals for each potential function $\phi_\alpha, \alpha \in \mathcal{I}$ (when mean parameters lie in the marginal polytope).

If we can approximate $A(\theta)$ with $\tilde{A}(\theta)$ then we can get approximate marginals. Perhaps we can bound it without inordinate compute resources. Why do we want bounds? We shall see in future lectures.

The Bethe approximation (as we’ll also see) is such an approximation and corresponds to fixed points of loopy belief propagation.

In some rarer cases, we can bound the approximation (current research trend).
Log partition function

- So $\nabla A : \Omega \rightarrow \mathcal{M}'$, where $\mathcal{M}' \subseteq \mathcal{M}$, and where
\[
\mathcal{M} = \{ \mu \in \mathbb{R}^d | \exists p \text{ s.t. } \mathbb{E}_p[\phi(X)] = \mu \}.
\]
Log partition function

- So $\nabla A : \Omega \rightarrow \mathcal{M}'$, where $\mathcal{M}' \subseteq \mathcal{M}$, and where
 $$\mathcal{M} = \{ \mu \in \mathbb{R}^d | \exists p \text{ s.t. } \mathbb{E}_p[\phi(X)] = \mu \}.$$

- For minimal exponential family models, this mapping is one-to-one, that is there is a unique pairing between μ and θ.

- For non-minimal exponential families, more than one θ for a given μ (not surprising since multiple θ's can yield the same distribution). For non-exponential families, other distributions can yield μ, but the exponential family one is the one that has maximum entropy.

 ex1: Gaussian, a distribution with maximum entropy amongst all other distributions with same mean and covariance.
 ex2: Consider the maximum entropy optimization problem, yields a distribution with exactly this property.

Key point: all mean parameters that are realizable are also realizable by member of exp. family.
Log partition function

- So $\nabla A : \Omega \to \mathcal{M}'$, where $\mathcal{M}' \subseteq \mathcal{M}$, and where
 $$\mathcal{M} = \{ \mu \in \mathbb{R}^d | \exists p \text{ s.t. } \mathbb{E}_p[\phi(X)] = \mu \}.$$

- For minimal exponential family models, this mapping is one-to-one, that is there is a unique pairing between μ and θ.

- For non-minimal exponential families, more than one θ for a given μ (not surprising since multiple θ's can yield the same distribution).
Log partition function

- So $\nabla A : \Omega \to \mathcal{M}'$, where $\mathcal{M}' \subseteq \mathcal{M}$, and where
 $\mathcal{M} = \{\mu \in \mathbb{R}^d | \exists p \text{ s.t. } \mathbb{E}_p[\phi(X)] = \mu\}$.

- For minimal exponential family models, this mapping is one-to-one,
 that is there is a unique pairing between μ and θ.

- For non-minimal exponential families, more than one θ for a given μ
 (not surprising since multiple θ's can yield the same distribution).

- For non-exponential families, other distributions can yield μ, but the
 exponential family one is the one that has maximum entropy.
Log partition function

- So \(\nabla A : \Omega \rightarrow \mathcal{M}' \), where \(\mathcal{M}' \subseteq \mathcal{M} \), and where \(\mathcal{M} = \{ \mu \in \mathbb{R}^d | \exists p \text{ s.t. } \mathbb{E}_p[\phi(X)] = \mu \} \).

- For minimal exponential family models, this mapping is one-to-one, that is there is a unique pairing between \(\mu \) and \(\theta \).

- For non-minimal exponential families, more than one \(\theta \) for a given \(\mu \) (not surprising since multiple \(\theta \)'s can yield the same distribution).

- For non-exponential families, other distributions can yield \(\mu \), but the exponential family one is the one that has maximum entropy. \textbf{ex1:} Gaussian, a distribution with maximum entropy amongst all other distributions with same mean and covariance.
Log partition function

- So $\nabla A : \Omega \rightarrow M'$, where $M' \subseteq M$, and where

 $M = \{ \mu \in \mathbb{R}^d \ | \exists p \mathrm{ s.t. } E_p[\phi(X)] = \mu \}$.

- For minimal exponential family models, this mapping is one-to-one, that is there is a unique pairing between μ and θ.

- For non-minimal exponential families, more than one θ for a given μ (not surprising since multiple θ's can yield the same distribution).

- For non-exponential families, other distributions can yield μ, but the exponential family one is the one that has maximum entropy. ex1: Gaussian, a distribution with maximum entropy amongst all other distributions with same mean and covariance. ex2: Consider the maximum entropy optimization problem, yields a distribution with exactly this property.
Log partition function

- So $\nabla A : \Omega \to \mathcal{M}'$, where $\mathcal{M}' \subseteq \mathcal{M}$, and where $\mathcal{M} = \left\{ \mu \in \mathbb{R}^d | \exists p \text{ s.t. } E_p[\phi(X)] = \mu \right\}$.

- For minimal exponential family models, this mapping is one-to-one, that is there is a unique pairing between μ and θ.

- For non-minimal exponential families, more than one θ for a given μ (not surprising since multiple θ's can yield the same distribution).

- For non-exponential families, other distributions can yield μ, but the exponential family one is the one that has maximum entropy. ex1: Gaussian, a distribution with maximum entropy amongst all other distributions with same mean and covariance. ex2: Consider the maximum entropy optimization problem, yields a distribution with exactly this property.

- Key point: all mean parameters that are realizable are also realizable by member of exp. family.
In fact, we have

Theorem 12.4.1

The gradient map ∇A is one-to-one iff the exponential representation is minimal.
Mappings - one-to-one

In fact, we have

Theorem 12.4.1

The gradient map ∇A is one-to-one iff the exponential representation is minimal.

- Proof basically uses property that if representation is non-minimal, and $\langle a, \phi(x) \rangle = c$ for all x, then we can form an affine set of equivalent parameters $\theta + \gamma a$.
In fact, we have

Theorem 12.4.1

The gradient map ∇A is one-to-one iff the exponential representation is minimal.

- Proof basically uses property that if representation is non-minimal, and $\langle a, \phi(x) \rangle = c$ for all x, then we can form an affine set of equivalent parameters $\theta + \gamma a$.

- Other direction, uses strict convexity of $A(\theta)$
Theorem 12.4.2

In a minimal exponential family, the gradient map \(\nabla A \) is onto the interior of \(\mathcal{M} \) (denoted \(\mathcal{M}^\circ \)). Consequently, for each \(\mu \in \mathcal{M}^\circ \), there exists some \(\theta = \theta(\mu) \in \Omega \) such that \(E_\theta[\phi(X)] = \mu \).
Theorem 12.4.2

In a minimal exponential family, the gradient map ∇A is onto the interior of \mathcal{M} (denoted \mathcal{M}°). Consequently, for each $\mu \in \mathcal{M}^\circ$, there exists some $\theta = \theta(\mu) \in \Omega$ such that $\mathbb{E}_\theta[\phi(X)] = \mu$.

- Ex: Gaussian. Any mean parameter (set of means $\mathbb{E}[X]$ and correlations $\mathbb{E}[XX^T]$) can be realized by a Gaussian having those same mean parameters (moments).
Theorem 12.4.2

In a minimal exponential family, the gradient map ∇A is onto the interior of \mathcal{M} (denoted \mathcal{M}°). Consequently, for each $\mu \in \mathcal{M}^\circ$, there exists some $\theta = \theta(\mu) \in \Omega$ such that $\mathbb{E}_{\theta}[\phi(X)] = \mu$.

- Ex: Gaussian. Any mean parameter (set of means $\mathbb{E}[X]$ and correlations $\mathbb{E}[XX^T]$) can be realized by a Gaussian having those same mean parameters (moments).
- The Gaussian won’t nec. be the “true” distribution (in such case, the “true” distribution would not be a Gaussian, and might be an exponential family distribution with additional moments (e.g., 1D Gaussians have zero skew and kurtosis) or might not be exponential family at all).
Theorem 12.4.2

In a minimal exponential family, the gradient map ∇A is onto the interior of \mathcal{M} (denoted \mathcal{M}°). Consequently, for each $\mu \in \mathcal{M}^\circ$, there exists some $\theta = \theta(\mu) \in \Omega$ such that $\mathbb{E}_\theta[\phi(X)] = \mu$.

- Ex: Gaussian. Any mean parameter (set of means $\mathbb{E}[X]$ and correlations $\mathbb{E}[XX^T]$) can be realized by a Gaussian having those same mean parameters (moments).
- The Gaussian won’t nec. be the “true” distribution (in such case, the “true” distribution would not be a Gaussian, and might be an exponential family distribution with additional moments (e.g., 1D Gaussians have zero skew and kurtosis) or might not be exponential family at all).
- The theorem here is more general and applies for any set of sufficient statistics.
Conjugate Duality

Consider maximum likelihood problem for exp. family

$$\theta^* \in \arg\max_\theta (\langle \theta, \hat{\mu} \rangle - A(\theta))$$ \hspace{1cm} (12.34)
Conjugate Duality

- Consider maximum likelihood problem for exp. family

\[\theta^* \in \arg\max_{\theta} (\langle \theta, \hat{\mu} \rangle - A(\theta)) \] \hspace{1cm} (12.34)

- Convex conjugate dual (also sometimes Fenchel-Legendre dual or transform) of \(A(\theta) \) is defined as:

\[A^*(\mu) \triangleq \sup_{\theta \in \Omega} (\langle \theta, \mu \rangle - A(\theta)) \] \hspace{1cm} (12.35)
Conjugate Duality

Consider maximum likelihood problem for exp. family

\[\theta^* \in \arg \max_{\theta} (\langle \theta, \hat{\mu} \rangle - A(\theta)) \] \hspace{1cm} (12.34)

Convex conjugate dual (also sometimes Fenchel-Legendre dual or transform) of \(A(\theta) \) is defined as:

\[A^*(\mu) \triangleq \sup_{\theta \in \Omega} (\langle \theta, \mu \rangle - A(\theta)) \] \hspace{1cm} (12.35)

So dual is optimal value of the ML problem, when \(\mu \in \mathcal{M} \), and we saw the relationship between ML and negative entropy before.
Conjugate Duality

- Consider maximum likelihood problem for exp. family
 \[\theta^* \in \arg\max_{\theta} (\langle \theta, \hat{\mu} \rangle - A(\theta)) \]
 (12.34)

- Convex conjugate dual (also sometimes Fenchel-Legendre dual or transform) of \(A(\theta) \) is defined as:
 \[A^*(\mu) \overset{\Delta}{=} \sup_{\theta \in \Omega} (\langle \theta, \mu \rangle - A(\theta)) \]
 (12.35)

- So dual is optimal value of the ML problem, when \(\mu \in M \), and we saw the relationship between ML and negative entropy before.

- Key: when \(\mu \in M \), dual is negative entropy of exponential model \(p_{\theta(\mu)} \) where \(\theta(\mu) \) is the unique set of canonical parameters satisfying this matching condition
 \[\mathbb{E}_{\theta(\mu)}[\phi(X)] = \nabla A(\theta(\mu)) = \mu \]
 (12.36)
Conjugate Duality

- Consider maximum likelihood problem for exp. family

\[\theta^* \in \arg\max_{\theta} (\langle \theta, \hat{\mu} \rangle - A(\theta)) \]

(12.34)

- Convex conjugate dual (also sometimes Fenchel-Legendre dual or transform) of \(A(\theta) \) is defined as:

\[A^*(\mu) \triangleq \sup_{\theta \in \Omega} (\langle \theta, \mu \rangle - A(\theta)) \]

(12.35)

- So dual is optimal value of the ML problem, when \(\mu \in \mathcal{M} \), and we saw the relationship between ML and negative entropy before.

- Key: when \(\mu \in \mathcal{M} \), dual is negative entropy of exponential model \(p_{\theta(\mu)} \) where \(\theta(\mu) \) is the unique set of canonical parameters satisfying this matching condition

\[\mathbb{E}_{\theta(\mu)}[\phi(X)] = \nabla A(\theta(\mu)) = \mu \]

(12.36)

- When \(\mu \notin \mathcal{M} \), then \(A^*(\mu) = +\infty \), optimization with dual need consider points only in \(\mathcal{M} \).
Theorem 12.4.3 (Relationship between A and A^*)

(a) For any $\mu \in \mathcal{M}^\circ$, $\theta(\mu)$ unique canonical parameter sat. matching condition, then conj. dual takes form:

$$A^*(\mu) = \sup_{\theta \in \Omega} \left(\langle \theta, \mu \rangle - A(\theta) \right) = \begin{cases} -H(p_{\theta(\mu)}) & \text{if } \mu \in \mathcal{M}^\circ \\ +\infty & \text{if } \mu \in \bar{\mathcal{M}} \end{cases} \quad (12.37)$$

(b) Partition function has variational representation (dual of dual)

$$A(\theta) = \sup_{\mu \in \mathcal{M}} \left\{ \langle \theta, \mu \rangle - A^*(\mu) \right\} \quad (12.38)$$

(c) For $\theta \in \Omega$, sup occurs at $\mu \in \mathcal{M}^\circ$ of moment matching conditions

$$\mu = \int_{\mathcal{D}_X} \phi(x)p_{\theta}(x)\nu(dx) = \mathbb{E}_\theta[\phi(X)] = \nabla A(\theta) \quad (12.39)$$
Note that A^* isn't exactly entropy, only entropy sometimes, and depends on matching parameters to μ via the matching mapping $\theta(\mu)$ which achieves

$$E_{\theta(\mu)}[\phi(X)] = \mu$$ (12.40)
Conjugate Duality

- Note that A^* isn’t exactly entropy, only entropy sometimes, and depends on matching parameters to μ via the matching mapping $\theta(\mu)$ which achieves

$$E_{\theta(\mu)}[\phi(X)] = \mu$$ \hspace{1cm} (12.40)

- $A(\theta)$ in Equation 12.38 is the “inference” problem (dual of the dual) for a given θ, since computing it involves computing the desired node/edge marginals.
Conjugate Duality

- Note that A^* isn’t exactly entropy, only entropy sometimes, and depends on matching parameters to μ via the matching mapping $\theta(\mu)$ which achieves

 $$E_{\theta(\mu)}[\phi(X)] = \mu$$

- $A(\theta)$ in Equation 12.38 is the “inference” problem (dual of the dual) for a given θ, since computing it involves computing the desired node/edge marginals.

- Whenever $\mu \notin \mathcal{M}$, then $A^*(\mu)$ returns ∞ which can’t be the resulting sup in Equation 12.38, so Equation 12.38 need only consider \mathcal{M}.
Conjugate Duality

\[A(\theta) = \sup_{\mu \in \mathcal{M}} \{ \langle \theta, \mu \rangle - A^*(\mu) \} \] \hspace{1cm} (12.38)

- computing \(A(\theta) \) in this way corresponds to the inference problem (finding mean parameters, or node and edge marginals). Key: we compute the log partition function simultaneously with solving inference, given the dual.
Conjugate Duality

\[A(\theta) = \sup_{\mu \in \mathcal{M}} \left\{ \langle \theta, \mu \rangle - A^*(\mu) \right\} \]

- computing \(A(\theta) \) in this way corresponds to the inference problem (finding mean parameters, or node and edge marginals). **Key:** we compute the log partition function simultaneously with solving inference, given the dual.

- **Good news:** problem is concave objective over a convex set. Should be easy. In simple examples, indeed, it is easy. 😊
Conjugate Duality

\[A(\theta) = \sup_{\mu \in \mathcal{M}} \left\{ \langle \theta, \mu \rangle - A^*(\mu) \right\} \] \hspace{1cm} (12.38)

- computing \(A(\theta) \) in this way corresponds to the inference problem (finding mean parameters, or node and edge marginals). Key: we compute the log partition function simultaneously with solving inference, given the dual.

- Good news: problem is concave objective over a convex set. Should be easy. In simple examples, indeed, it is easy. 😊

- Bad news: \(\mathcal{M} \) is quite complicated to characterize, depends on the complexity of the graphical model. 😞
Conjugate Duality

\[
A(\theta) = \sup_{\mu \in \mathcal{M}} \{ \langle \theta, \mu \rangle - A^*(\mu) \} \tag{12.38}
\]

- computing \(A(\theta) \) in this way corresponds to the inference problem (finding mean parameters, or node and edge marginals). **Key:** we compute the log partition function simultaneously with solving inference, given the dual.

- Good news: problem is concave objective over a convex set. Should be easy. In simple examples, indeed, it is easy. 😊

- Bad news: \(\mathcal{M} \) is quite complicated to characterize, depends on the complexity of the graphical model. 😞

- More bad news: \(A^* \) not given explicitly in general and hard to compute. 😞
Some good news: The above form gives us new avenues to do approximation. 😊

\[A(\theta) = \sup_{\mu \in \mathcal{M}} \{ \langle \theta, \mu \rangle - A^*(\mu) \} \] (12.38)
Some good news: The above form gives us new avenues to do approximation. 😊

For example, we might either relax \mathcal{M} (making it less complex), relax $A^*(\mu)$ (making it easier to compute over), or both. 😊
Some good news: The above form gives us new avenues to do approximation. 😊

For example, we might either relax \mathcal{M} (making it less complex), relax $A^*(\mu)$ (making it easier to compute over), or both. 😊

Surprisingly, this is strongly related to belief propagation (i.e., the sum-product commutative semiring). 😊😊
Some good news: The above form gives us new avenues to do approximation. 😊

For example, we might either relax \mathcal{M} (making it less complex), relax $A^*(\mu)$ (making it easier to compute over), or both. 😊

Surprisingly, this is strongly related to belief propagation (i.e., the sum-product commutative semiring). 😊😊

Much of the rest of the class will be above approaches to the above correspond not only to junction tree algorithm (that we’ve seen) but also to well-known approximation methods (LBP, mean-field, Bethe, expectation-propagation (EP), Kikuchi methods, linear programming relaxations, and semidefinite relaxations, some of which we will cover).
Overcomplete, simple notation

- We’ll see: LBP (sum-product alg.) has much to do with an approximation to the aforementioned variational problems.
Overcomplete, simple notation

- We’ll see: LBP (sum-product alg.) has much to do with an approximation to the aforementioned variational problems.
- Recall: dealing only with pairwise interactions (natural for image processing) – If not pairwise, we can convert from factor graph to factor graph with factor-width 2 factors.
We’ll see: LBP (sum-product alg.) has much to do with an approximation to the aforementioned variational problems.

Recall: dealing only with pairwise interactions (natural for image processing) – If not pairwise, we can convert from factor graph to factor graph with factor-width 2 factors.

Exponential overcomplete family model of form

\[p_{\theta}(x) = \frac{1}{Z(\theta)} \exp \left\{ \sum_{v \in V(G)} \theta_v(x_v) + \sum_{(s,t) \in E(G)} \theta_{st}(x_s, x_t) \right\} \]

with simple new shorthand notation functions \(\theta_v \) and \(\theta_{st} \).

\[\theta_v(x_v) \triangleq \sum_{i} \theta_{v,i} 1(x_v = i) \quad \text{and} \quad (12.41) \]

\[\theta_{s,t}(x_s, x_t) \triangleq \sum_{i,j} \theta_{st,ij} 1(x_s = i, x_t = j) \quad (12.42) \]
We also have mean parameters that constitute the marginal polytope.

\[
\mu_v(x_v) \triangleq \sum_{i \in D_{X_v}} \mu_{v,i} \mathbf{1}(x_v = i), \quad \text{for } u \in V(G) \quad (12.43)
\]

\[
\mu_{st}(x_s, x_t) \triangleq \sum_{(j,k) \in D_{X_{\{s,t\}}}} \mu_{st,jk} \mathbf{1}(x_s = j, x_t = k), \quad \text{for } (s,t) \in E(G) \quad (12.44)
\]
We also have mean parameters that constitute the marginal polytope.

\[\mu_v(x_v) \triangleq \sum_{i \in D_{X_v}} \mu_{v,i} \mathbf{1}(x_v = i), \quad \text{for } u \in V(G) \] (12.43)

\[\mu_{st}(x_s, x_t) \triangleq \sum_{(j,k) \in D_{X_{\{s,t\}}}} \mu_{st,jk} \mathbf{1}(x_s = j, x_t = k), \quad \text{for } (s, t) \in E(G) \] (12.44)

And \(\mathcal{M}(G) \) corresponds to the set of all singleton and pairwise marginals that can be jointly realized by some underlying probability distribution \(p \in \mathcal{F}(G, \mathcal{M}^{(f)}) \) that contains only pairwise interactions.
Marginal notation, and graph
Marginal polytope

- We also have mean parameters that constitute the marginal polytope.

\[\mu_v(x_v) \triangleq \sum_{i \in D_{X_v}} \mu_{v,i} 1(x_v = i), \text{ for } u \in V(G) \]

(12.43)

\[\mu_{st}(x_s, x_t) \triangleq \sum_{(j,k) \in D_{X \{s,t\}}} \mu_{st,jk} 1(x_s = j, x_t = k), \text{ for } (s, t) \in E(G) \]

(12.44)

- And \(\mathcal{M}(G) \) corresponds to the set of all singleton and pairwise marginals that can be jointly realized by some underlying probability distribution \(p \in \mathcal{F}(G, \mathcal{M}^{(f)}) \) that contains only pairwise interactions.

- Note, \(\mathcal{M}(G) \) is respect to a graph \(G \).
We also have mean parameters that constitute the marginal polytope.

\[
\mu_v(x_v) \triangleq \sum_{i \in \mathcal{D}_{X_v}} \mu_{v,i} \mathbf{1}(x_v = i), \quad \text{for } u \in V(G) \tag{12.43}
\]

\[
\mu_{st}(x_s, x_t) \triangleq \sum_{(j,k) \in \mathcal{D}_{X\{s,t\}}} \mu_{st,jk} \mathbf{1}(x_s = j, x_t = k), \quad \text{for } (s,t) \in E(G) \tag{12.44}
\]

And \(\mathcal{M}(G)\) corresponds to the set of all singleton and pairwise marginals that can be jointly realized by some underlying probability distribution \(p \in \mathcal{F}(G, \mathcal{M}^{(f)})\) that contains only pairwise interactions.

Note, \(\mathcal{M}(G)\) is respect to a graph \(G\).

\(\mathcal{M}\) can be represented as a convex hull of a set of points, or by a set of linear inequality constraints.
Local consistency polytope

- An “outer bound” of \mathcal{M} consists of a set that contains \mathcal{M}, and if it is formed from a subset of the linear inequalities (subset of the rows of matrix module (A, b)), then it is a polyhedral outer bound. Let's call this \mathcal{L}.
Local consistency polytope

- An “outer bound” of \mathcal{M} consists of a set that contains \mathcal{M}, and if it is formed from a subset of the linear inequalities (subset of the rows of matrix module (A, b)), then it is a polyhedral outer bound. Let's call this \mathcal{L}.

- Another way to form outer bound: require only consistency, i.e., consider set $\{\tau_v, v \in V(G)\} \cup \{\tau_s,t, (s, t) \in E(G)\}$ that is non-negative and satisfies normalization

$$\sum_{x_v} \tau_v(x_v) = 1 \quad (12.45)$$

and pair-node marginal consistency constraints

$$\sum_{x'_t} \tau_{s,t}(x'_s, x'_t) = \tau_s(x'_s) \quad (12.46a)$$

$$\sum_{x'_s} \tau_{s,t}(x'_s, x_t) = \tau_t(x_t) \quad (12.46b)$$
Define $\mathbb{L}(G)$ to be the (locally consistent) polytope that obeys the constraints in Equations 12.45 and 12.46.

Recall: local consistency was the necessary conditions for potentials being marginals that, it turned out, for junction tree that also guaranteed global consistency.

Clearly $\mathbb{M} \subseteq \mathbb{L}(G)$ since any member of \mathbb{M} (true marginals) will be locally consistent.

When G is a tree, we say that local consistency implies global consistency, so for any tree T, we have $\mathbb{M}(T) = \mathbb{L}(T)$

When G has cycles, however, $\mathbb{M}(G) \subset \mathbb{L}(G)$ strictly. We refer to members of $\mathbb{L}(G)$ as **pseudo-marginals**

Key problem is that members of \mathbb{L} might not be true possible marginals for any distribution.
Pseudo-marginals

\[\tau_v(x_v) = [0.5, 0.5], \quad \text{and} \quad \tau_{s,t}(x_s, x_t) = \begin{bmatrix} \beta_{st} & 0.5 - \beta_{st} \\ 0.5 - \beta_{st} & \beta_{st} \end{bmatrix} \] (12.47)

- Consider on 3-cycle \(C_3 \), satisfies local consistency.
- But for this won’t give us a marginal. Below shows \(\mathcal{M}(C_3) \) for \(\mu_1 = \mu_2 = \mu_3 = 1/2 \) and the \(\mathcal{L}(C_3) \) outer bound (dotted).
Exponential Family: Recap

- Exponential Family

\[p_\theta(x) = \exp(\langle \theta, \phi(x) \rangle - A(\theta)) \quad (12.48) \]

with

\[A(\theta) = \log \int_{D_X} \langle \theta, \phi(x) \rangle \nu(dx) \quad (12.49) \]
Exponential Family: Recap

- Exponential Family

\[p_{\theta}(x) = \exp(\langle \theta, \phi(x) \rangle - A(\theta)) \]

with

\[A(\theta) = \log \int_{D_X} \langle \theta, \phi(x) \rangle \nu(dx) \]

- \(A(\theta) \) is key.
Exponential Family: Recap

- **Exponential Family**

 \[p_\theta(x) = \exp(\langle \theta, \phi(x) \rangle - A(\theta)) \]
 \[
 (12.48)

 with

 \[
 A(\theta) = \log \int_{D_X} \langle \theta, \phi(x) \rangle \nu(dx)
 \]
 \[
 (12.49)

 - **A(\theta)** is key.

 - **Forward mapping, inference:** from \(\theta \in \Omega \) to \(\mu \in \mathcal{M} \), get marginals.
Exponential Family: Recap

- Exponential Family

\[p_{\theta}(x) = \exp(\langle \theta, \phi(x) \rangle - A(\theta)) \]

(12.48)

with

\[A(\theta) = \log \int_{D_X} \langle \theta, \phi(x) \rangle \nu(dx) \]

(12.49)

- \(A(\theta) \) is key.

- Forward mapping, inference: from \(\theta \in \Omega \) to \(\mu \in M \), get marginals.

- Backwards mapping, learning: from \(\mu \in M \) to \(\theta \in \Omega \), getting best parameters associated with empirical facts (means).
Exponential Family: Recap

- **Exponential Family**

\[p_{\theta}(x) = \exp(\langle \theta, \phi(x) \rangle - A(\theta)) \] \hspace{1cm} (12.48)

with

\[A(\theta) = \log \int_{D_x} \langle \theta, \phi(x) \rangle \nu(dx) \] \hspace{1cm} (12.49)

- \(A(\theta) \) is key.

- **Forward mapping, inference:** from \(\theta \in \Omega \) to \(\mu \in \mathcal{M} \), get marginals.

- **Backwards mapping, learning:** from \(\mu \in \mathcal{M} \) to \(\theta \in \Omega \), getting best parameters associated with empirical facts (means).

- So learning is dual of inference.
Bethe Entropy Approximation

\[A(\theta) = \sup_{\mu \in \mathcal{M}} \{ \langle \theta, \mu \rangle - A^*(\mu) \} \] (12.38)

- So inference corresponds to Equation 12.38, and we have two difficulties \(\mathcal{M} \) and \(A^*(\mu) \).
- Maybe it is hard to compute \(A^*(\mu) \) but perhaps we can reasonably approximate it.
- In case when \(-A^*(\mu)\) is the entropy, let's use an approximate entropy based on \(\mathcal{L} \) being those distributions that factor w.r.t. a tree.
- When \(p \in \mathcal{F}(G, \mathcal{M}^{(f)}) \) and \(G \) is a tree \(T \), then we can write \(p \) as:

\[p(x_1, \ldots, x_N) = \prod_{v \in V(T)} p_v(x_v) \prod_{(i,j) \in E(T)} \frac{p_{ij}(x_i, x_j)}{p_i(x_i)p_j(x_j)} \] (12.50)
Bethe Entropy Approximation

In terms of current notation, we can let \(\mu \in \mathbb{L}(T) \), the pseudo marginals associated with \(T \). Since local consistency requires global consistency, for a tree, any \(\mu \in \mathbb{L}(T) \) is such that \(\mu \in \mathbb{M}(T) \), thus

\[
p_{\mu}(x) = \prod_{s \in V(T)} \mu_s(x_s) \prod_{(s,t) \in E(T)} \frac{\mu_{st}(x_s, x_t)}{\mu_s(x_s) \mu_t(x_t)} \tag{12.51}
\]
Bethe Entropy Approximation

- In terms of current notation, we can let $\mu \in \mathbb{L}(T)$, the pseudo marginals associated with T. Since local consistency requires global consistency, for a tree, any $\mu \in \mathbb{L}(T)$ is such that $\mu \in \mathbb{M}(T)$, thus

$$p_{\mu}(x) = \prod_{s \in V(T)} \mu_s(x_s) \prod_{(s,t) \in E(T)} \frac{\mu_{st}(x_s, x_t)}{\mu_s(x_s)\mu_t(x_t)} \quad (12.51)$$

- When $G = T$ is a tree, and $\mu \in \mathbb{L}(T) = \mathbb{M}(T)$ we have

$$-A^*(\mu) = H(p_{\mu}) = \sum_{v \in V(T)} H(X_v) - \sum_{(s,t) \in E(T)} I(X_s; X_t) \quad (12.52)$$

$$= \sum_{v \in V(T)} H_v(\mu_v) - \sum_{(s,t) \in E(T)} I_{st}(\mu_{st}) \quad (12.53)$$
Bethe Entropy Approximation

- In terms of current notation, we can let $\mu \in \mathbb{L}(T)$, the pseudo marginals associated with T. Since local consistency requires global consistency, for a tree, any $\mu \in \mathbb{L}(T)$ is such that $\mu \in \mathbb{M}(T)$, thus

$$p_\mu(x) = \prod_{s \in V(T)} \mu_s(x_s) \prod_{(s,t) \in E(T)} \frac{\mu_{st}(x_s, x_t)}{\mu_s(x_s) \mu_t(x_t)}$$ \hspace{1cm} (12.51)

- When $G = T$ is a tree, and $\mu \in \mathbb{L}(T) = \mathbb{M}(T)$ we have

$$-A^*(\mu) = H(p_\mu) = \sum_{v \in V(T')} H(X_v) - \sum_{(s,t) \in E(T')} I(X_s; X_t)$$ \hspace{1cm} (12.52)

$$= \sum_{v \in V(T)} H_v(\mu_v) - \sum_{(s,t) \in E(T)} I_{st}(\mu_{st})$$ \hspace{1cm} (12.53)

- That is, for $G = T$, $-A^*(\mu)$ is very easy to compute (only need to compute entropy and mutual information over at most pairs).
We can perhaps just use this as an approximation, i.e., say that for any graph $G = (V, E)$ not nec. a tree.
We can perhaps just use this as an approximation, i.e., say that for any graph \(G = (V, E) \) not nec. a tree.

That is, assuming that the distribution is structured over pairwise potential functions w.r.t. a graph \(G \), we can make an approximation to \(-A^*(\tau)\) based on equation that has same form, i.e.,

\[
-A^*(\tau) \approx H_{\text{Bethe}}(\tau) \overset{\Delta}{=} \sum_{v \in V(G)} H_v(\tau_v) - \sum_{(s,t) \in E(G)} I_{st}(\tau_{st}) \tag{12.54}
\]
Bethe Entropy Approximation

- We can perhaps just use this as an approximation, i.e., say that for any graph $G = (V, E)$ not nec. a tree.

- That is, assuming that the distribution is structured over pairwise potential functions w.r.t. a graph G, we can make an approximation to $-A^*(\tau)$ based on equation that has same form, i.e.,

$$-A^*(\tau) \approx H_{\text{Bethe}}(\tau) \triangleq \sum_{v \in V(G)} H_v(\tau_v) - \sum_{(s,t) \in E(G)} I_{st}(\tau_{st}) \quad (12.54)$$

- Key: $H_{\text{Bethe}}(\tau)$ is not necessarily concave as it is not a real entropy.
Bethe Entropy Approximation

- We can perhaps just use this as an approximation, i.e., say that for any graph $G = (V, E)$ not nec. a tree.
- That is, assuming that the distribution is structured over pairwise potential functions w.r.t. a graph G, we can make an approximation to $-A^*(\tau)$ based on equation that has same form, i.e.,

$$-A^*(\tau) \approx H_{\text{Bethe}}(\tau) \triangleq \sum_{v \in V(G)} H_v(\tau_v) - \sum_{(s,t) \in E(G)} I_{st}(\tau_{st}) \quad (12.54)$$

- Key: $H_{\text{Bethe}}(\tau)$ is not necessarily concave as it is not a real entropy.
- MI equation is not hard to compute $O(r^2)$.

$$I_{st}(\tau_{st}) = I_{st}(\tau_{st}(x_s, x_t)) \quad (12.55)$$

$$= \sum_{x_s, x_t} \tau_{st}(x_s, x_t) \log \frac{\tau_{st}(x_s, x_t)}{\tau_s(x_s)\tau_t(x_t)} \quad (12.56)$$
Bethe Variational Problem and LBP

Original variational representation of log partition function

\[A(\theta) = \sup_{\mu \in \mathcal{M}} \{ \langle \theta, \mu \rangle - A^*(\mu) \} \]

(12.57)
Bethe Variational Problem and LBP

Original variational representation of log partition function

\[A(\theta) = \sup_{\mu \in \mathcal{M}} \{ \langle \theta, \mu \rangle - A^*(\mu) \} \]
(12.57)

Approximate variational representation of log partition function

\[A_{\text{Bethe}}(\theta) = \sup_{\tau \in \mathcal{L}} \{ \langle \theta, \tau \rangle + H_{\text{Bethe}}(\tau) \} \]
(12.58)

\[= \sup_{\tau \in \mathcal{L}} \left\{ \langle \theta, \tau \rangle + \sum_{v \in V(G)} H_v(\tau_v) - \sum_{(s,t) \in E(G)} I_{st}(\tau_{st}) \right\} \]
(12.59)
Bethe Variational Problem and LBP

Original variational representation of log partition function

\[A(\theta) = \sup_{\mu \in \mathcal{M}} \{ \langle \theta, \mu \rangle - A^*(\mu) \} \tag{12.57} \]

Approximate variational representation of log partition function

\[A_{\text{Bethe}}(\theta) = \sup_{\tau \in \mathbb{L}} \{ \langle \theta, \tau \rangle + H_{\text{Bethe}}(\tau) \} \tag{12.58} \]

\[= \sup_{\tau \in \mathbb{L}} \left\{ \langle \theta, \tau \rangle + \sum_{v \in V(G)} H_v(\tau_v) - \sum_{(s,t) \in E(G)} I_{st}(\tau_{st}) \right\} \tag{12.59} \]

- Exact when \(G = T \) but we do this for any \(G \), still commutable
Bethe Variational Problem and LBP

Original variational representation of log partition function

\[
A(\theta) = \sup_{\mu \in \mathcal{M}} \{ \langle \theta, \mu \rangle - A^*(\mu) \}
\]

(12.57)

Approximate variational representation of log partition function

\[
A_{\text{Bethe}}(\theta) = \sup_{\tau \in \mathbb{L}} \{ \langle \theta, \tau \rangle + H_{\text{Bethe}}(\tau) \}
\]

(12.58)

\[
= \sup_{\tau \in \mathbb{L}} \left\{ \langle \theta, \tau \rangle + \sum_{v \in V(G)} H_v(\tau_v) - \sum_{(s,t) \in E(G)} I_{st}(\tau_{st}) \right\}
\]

(12.59)

- Exact when \(G = T \) but we do this for any \(G \), still commutable
- we get an approximate log partition function, and approximate (pseudo) marginals (in \(\mathbb{L} \)), but this is perhaps much easier to compute.
Bethe Variational Problem and LBP

Original variational representation of log partition function

\[A(\theta) = \sup_{\mu \in \mathcal{M}} \{ \langle \theta, \mu \rangle - A^*(\mu) \} \] (12.57)

Approximate variational representation of log partition function

\[A_{\text{Bethe}}(\theta) = \sup_{\tau \in \mathbb{L}} \{ \langle \theta, \tau \rangle + H_{\text{Bethe}}(\tau) \} \] (12.58)

\[= \sup_{\tau \in \mathbb{L}} \left\{ \langle \theta, \tau \rangle + \sum_{v \in V(G)} H_v(\tau_v) - \sum_{(s,t) \in E(G)} I_{st}(\tau_{st}) \right\} \] (12.59)

- Exact when \(G = T \) but we do this for any \(G \), still commutable
- we get an approximate log partition function, and approximate (pseudo) marginals (in \(\mathbb{L} \)), but this is perhaps much easier to compute.
- We can optimize this directly using a Lagrangian formulation.
Bethe Variational Problem and LBP

- Lagrangian constraints for summing to unity at nodes
 \[C_{vv}(\tau) = 1 - \sum_{x_v} \tau_v(x_v) \]
 \[(12.60) \]

- Lagrangian constraints for local consistency
 \[C_{ts}(x_s; \tau) = \tau_s(x_s) - \sum_{x_t} \tau_{st}(x_s, x_t) \]
 \[(12.61) \]

- Yields following Lagrangian
 \[\mathcal{L}(\tau, \lambda; \theta) = \langle \theta, \tau \rangle + H_{\text{Bethe}}(\tau) + \sum_{v \in V} \lambda_{vv} C_{vv}(\tau) \]
 \[+ \sum_{(s, t) \in E(G)} \left[\sum_{x_s} \lambda_{ts}(x_s) C_{ts}(x_s; \tau) + \sum_{x_t} \lambda_{st}(x_t) C_{st}(x_t; \tau) \right] \]
 \[(12.63) \]
Fixed points: Variational Problem and LBP

Theorem 12.6.1

LBP updates are Lagrangian method for attempting to solve Bethe variational problem:

(a) For any G, any LBP fixed point specifies a pair (τ^*, λ^*) s.t.

$$\nabla_\tau \mathcal{L}(\tau^*, \lambda^*; \theta) = 0 \text{ and } \nabla_\lambda \mathcal{L}(\tau^*, \lambda^*; \theta) = 0$$ \hspace{1cm} (12.64)

(b) For tree MRFs, Lagrangian equations have unique solution (τ^*, λ^*) where τ^* are exact node and edge marginals for the tree and the optimal value obtained is the true log partition function.

- Not guaranteed convex optimization, but is if graph is tree.
- Remarkably, this means if we run loopy belief propagation, and we reach a point where we have converged, then we will have achieved a fixed-point of the above Lagrangian, and thus a (perhaps reasonable) local optimum of the underlying variational problem.
Fixed points: Variational Problem and LBP

- The resulting Lagrange multipliers λ_{st} end up being exactly the messages that we have defined. I.e., we get

$$\lambda_{st}(x_t) = \mu_{s \rightarrow t}(x_t) = \sum_{x_s} \psi_{s,t}(x_s, x_t) \prod_{k \in \delta(s)\setminus\{t\}} \mu_{k \rightarrow s}(x_s) \quad (12.65)$$
Fixed points: Variational Problem and LBP

• The resulting Lagrange multipliers λ_{st} end up being exactly the messages that we have defined. I.e., we get

$$\lambda_{st}(x_t) = \mu_{s\rightarrow t}(x_t) = \sum_{x_s} \psi_{s,t}(x_s, x_t) \prod_{k \in \delta(s) \setminus \{t\}} \mu_{k\rightarrow s}(x_s) \quad (12.65)$$

• Proof: take derivatives of Lagrangian, set equal to zero, use Lagrangian constraints, do a bit of algebra, and amazingly, the BP messages suddenly pop out!!! (see page 86 in book).
The resulting Lagrange multipliers λ_{st} end up being exactly the messages that we have defined. I.e., we get

$$\lambda_{st}(x_t) = \mu_{s \rightarrow t}(x_t) = \sum_{x_s} \psi_{s,t}(x_s, x_t) \prod_{k \in \delta(s) \setminus \{t\}} \mu_{k \rightarrow s}(x_s) \quad (12.65)$$

Proof: take derivatives of Lagrangian, set equal to zero, use Lagrangian constraints, do a bit of algebra, and amazingly, the BP messages suddenly pop out!!! (see page 86 in book).

So we can now (at least) characterize any stable point of LBP.
Fixed points: Variational Problem and LBP

- The resulting Lagrange multipliers λ_{st} end up being exactly the messages that we have defined. I.e., we get

$$\lambda_{st}(x_t) = \mu_{s \rightarrow t}(x_t) = \sum_{x_s} \psi_{s,t}(x_s, x_t) \prod_{k \in \delta(s) \setminus \{t\}} \mu_{k \rightarrow s}(x_s) \quad (12.65)$$

- Proof: take derivatives of Lagrangian, set equal to zero, use Lagrangian constraints, do a bit of algebra, and amazingly, the BP messages suddenly pop out!!! (see page 86 in book).

- So we can now (at least) characterize any stable point of LBP.

- This does not mean that it will converge.
Fixed points: Variational Problem and LBP

- The resulting Lagrange multipliers λ_{st} end up being exactly the messages that we have defined. I.e., we get

$$\lambda_{st}(x_t) = \mu_{s \rightarrow t}(x_t) = \sum_{x_s} \psi_{s,t}(x_s, x_t) \prod_{k \in \delta(s) \setminus \{t\}} \mu_{k \rightarrow s}(x_s) \quad (12.65)$$

- Proof: take derivatives of Lagrangian, set equal to zero, use Lagrangian constraints, do a bit of algebra, and amazingly, the BP messages suddenly pop out!!! (see page 86 in book).

- So we can now (at least) characterize any stable point of LBP.

- This does not mean that it will converge.

- For trees, we’ll get $A_{\text{Bethe}}(\theta) = A(\theta)$, results of previous lectures (parallel or MPP-based message passing).
Bounds on A

Moreover, this does not mean $A_{\text{Bethe}}(\theta)$ will be a bound on $A(\theta)$ rather an approximation to it. Why bounds?
Bounds on A

- Moreover, this does not mean $A_{\text{Bethe}}(\theta)$ will be a bound on $A(\theta)$ rather an approximation to it. Why bounds? Recall Max. Likelihood

$$\theta^* \in \arg\max_{\theta} (\langle \theta, \hat{\mu} \rangle - A(\theta))$$

(??)
Moreover, this does not mean $A_{\text{Bethe}}(\theta)$ will be a bound on $A(\theta)$ rather an approximation to it. Why bounds? Recall Max. Likelihood

$$\theta^* \in \arg\max_{\theta} (\langle \theta, \hat{\mu} \rangle - A(\theta))$$

and convex conjugate dual of $A(\theta)$

$$A^*(\mu) \equiv \sup_{\theta \in \Omega} (\langle \theta, \mu \rangle - A(\theta))$$
Bounds on A

- Moreover, this does not mean $A_{\text{Bethe}}(\theta)$ will be a bound on $A(\theta)$ rather an approximation to it. Why bounds? Recall Max. Likelihood

$$\theta^* \in \arg\max_{\theta} \left(\langle \theta, \hat{\mu} \rangle - A(\theta) \right)$$

and convex conjugate dual of $A(\theta)$

$$A^*(\mu) \triangleq \sup_{\theta \in \Omega} \left(\langle \theta, \mu \rangle - A(\theta) \right)$$

- Recall again the expression for the partition function

$$A(\theta) = \sup_{\mu \in \mathcal{M}} \{ \langle \theta, \mu \rangle - A^*(\mu) \} \quad (12.38)$$
Bounds on A

Moreover, this does not mean $A_{\text{Bethe}}(\theta)$ will be a bound on $A(\theta)$ rather an approximation to it. Why bounds? Recall Max. Likelihood

$$\theta^* \in \arg \max_{\theta} (\langle \theta, \hat{\mu} \rangle - A(\theta))$$

and convex conjugate dual of $A(\theta)$

$$A^*(\mu) \triangleq \sup_{\theta \in \Omega} (\langle \theta, \mu \rangle - A(\theta))$$

Recall again the expression for the partition function

$$A(\theta) = \sup_{\mu \in \mathcal{M}} \{\langle \theta, \mu \rangle - A^*(\mu)\}$$

and some approximation to $A(\theta)$, say $A_{\text{approx}}(\theta)$.
Bounds on A

- Moreover, this does not mean $A_{\text{Bethe}}(\theta)$ will be a bound on $A(\theta)$ rather an approximation to it. Why bounds? Recall Max. Likelihood

$$\theta^* \in \arg\max_{\theta} (\langle \theta, \hat{\mu} \rangle - A(\theta))$$ \hspace{1cm} (??)

and convex conjugate dual of $A(\theta)$

$$A^*(\mu) \triangleq \sup_{\theta \in \Omega} (\langle \theta, \mu \rangle - A(\theta))$$ \hspace{1cm} (??)

- Recall again the expression for the partition function

$$A(\theta) = \sup_{\mu \in \mathcal{M}} \{ \langle \theta, \mu \rangle - A^*(\mu) \}$$ \hspace{1cm} (12.38)

and some approximation to $A(\theta)$, say $A_{\text{approx}}(\theta)$.

- Due to \sup, we might want, an upper bound $A_{\text{approx}}(\theta) \geq A(\theta)$,
Bounds on A

- Moreover, this does not mean $A_{\text{Bethe}}(\theta)$ will be a bound on $A(\theta)$ rather an approximation to it. Why bounds? Recall Max. Likelihood

$$\theta^* \in \arg\max_{\theta} (\langle \theta, \hat{\mu} \rangle - A(\theta))$$

and convex conjugate dual of $A(\theta)$

$$A^*(\mu) \triangleq \sup_{\theta \in \Omega} (\langle \theta, \mu \rangle - A(\theta))$$

- Recall again the expression for the partition function

$$A(\theta) = \sup_{\mu \in \mathcal{M}} \{ \langle \theta, \mu \rangle - A^*(\mu) \} \quad (12.38)$$

and some approximation to $A(\theta)$, say $A_{\text{approx}}(\theta)$.

- Due to \sup, we might want, an upper bound $A_{\text{approx}}(\theta) \geq A(\theta)$,
- mean-field methods (ch 5 in book) provides lower bound on $A(\theta)$.
Moreover, this does not mean $A_{\text{Bethe}}(\theta)$ will be a bound on $A(\theta)$ rather an approximation to it. Why bounds? Recall Max. Likelihood

$$\theta^* \in \arg\max_{\theta} (\langle \theta, \hat{\mu} \rangle - A(\theta))$$

and convex conjugate dual of $A(\theta)$

$$A^*(\mu) \triangleq \sup_{\theta \in \Omega} (\langle \theta, \mu \rangle - A(\theta))$$

Recall again the expression for the partition function

$$A(\theta) = \sup_{\mu \in \mathcal{M}} \{ \langle \theta, \mu \rangle - A^*(\mu) \}$$

and some approximation to $A(\theta)$, say $A_{\text{approx}}(\theta)$.

Due to \sup, we might want, an upper bound $A_{\text{approx}}(\theta) \geq A(\theta)$.

Mean-field methods (ch 5 in book) provides lower bound on $A(\theta)$.

For certain “attractive” potential functions, we get $A_{\text{Bethe}}(\theta) \leq A(\theta)$, these are common in computer vision and are related to graph cuts.
Bounds on A

- In general, ideally we would like methods that give us (as tight as possible) bounds, and we can use both upper and lower bounds.
In general, ideally we would like methods that give us (as tight as possible) bounds, and we can use both upper and lower bounds. Recall definition of the family

$$p_{\theta}(x) = \exp(\langle \theta, \phi(x) \rangle - A(\theta))$$ (12.66)
Bounds on A

- In general, ideally we would like methods that give us (as tight as possible) bounds, and we can use both upper and lower bounds.
- Recall definition of the family
 \[p_\theta(x) = \exp(\langle \theta, \phi(x) \rangle - A(\theta)) \]
 (12.66)

- So bounds on A can give us bounds on p. E.g., lower bounds on A will give us upper bounds on p.
Bounds on A

- In general, ideally we would like methods that give us (as tight as possible) bounds, and we can use both upper and lower bounds.
- Recall definition of the family
 \[p_\theta(x) = \exp(\langle \theta, \phi(x) \rangle - A(\theta)) \]
 (12.66)
- So bounds on A can give us bounds on p. E.g., lower bounds on A will give us upper bounds on p.
- To compute conditionals
 \[p(x_A|x_B) = \frac{p(x_{AUB})}{p(x_B)} = \frac{\sum_{x \setminus (A \cup B)} p(x)}{\sum_{x \setminus B} p(x)} \]
 (12.67)

we would like both upper and lower bounds on A depending on if we want to upper or lower bound probability estimates.
Bounds on A

- In general, ideally we would like methods that give us (as tight as possible) bounds, and we can use both upper and lower bounds.
- Recall definition of the family

$$p_\theta(x) = \exp(\langle \theta, \phi(x) \rangle - A(\theta))$$ \hspace{1cm} (12.66)

- So bounds on A can give us bounds on p. E.g., lower bounds on A will give us upper bounds on p.
- To compute conditionals

$$p(x_A|x_B) = \frac{p(x_{A\cup B})}{p(x_B)} = \frac{\sum_{x_{V\setminus(A\cup B)}} p(x)}{\sum_{x_{V\setminus B}} p(x)}$$ \hspace{1cm} (12.67)

we would like both upper and lower bounds on A depending on if we want to upper or lower bound probability estimates.
- Perhaps more importantly, $\exp(A(\theta))$ is a marginal in and of itself (recall it is marginalization over everything). If we can bound $A(\theta)$, we can come up with other forms of bounds over other marginals.
Lack of bounds for Bethe

- Two reasons A might be inaccurate:

\[
\begin{align*}
\mu_s(x_s) & = [0.50, 0.5] \\
\mu_{st}(x_s, x_t) & = \begin{bmatrix} 0 & 0.50 \\ 0.5 & 0 \end{bmatrix} \\
H_s(\mu_s) & = \log 2 \\
H_{st}(\mu_{st}) & = \log 2 \\
H_{Bethe}(\mu) & = 4\log 2 - 6\log 2 = -2\log 2 < 0
\end{align*}
\]
Lack of bounds for Bethe

- Two reasons A might be inaccurate: 1) We have replaced \overline{M} with outer bound L;

\[
\begin{align*}
\text{Example of inaccuracy (example 4.2 from book), consider a 4-clique} \\
\end{align*}
\]
Lack of bounds for Bethe

- Two reasons A might be inaccurate: 1) We have replaced \mathbb{M} with outer bound \mathbb{L}; and 2) we’ve used H_{Bethe} in place of the true dual A^*.
Two reasons A might be inaccurate: 1) We have replaced \mathbb{M} with outer bound \mathbb{L}; and 2) we’ve used H_{Bethe} in place of the true dual A^*.

Example of inaccuracy (example 4.2 from book), consider a 4-clique

\[
\mu_s(x_s) = \begin{bmatrix} 0.5 & 0.5 \end{bmatrix} \quad \text{for } s = 1, 2, 3, 4 \tag{12.68a}
\]

\[
\mu_{st}(x_s, x_t) = \begin{bmatrix} 0.5 & 0 \\ 0 & 0.5 \end{bmatrix} \quad \forall (s, t) \in E(G) \tag{12.68b}
\]
Lack of bounds for Bethe

- Two reasons A might be inaccurate: 1) We have replaced \mathbb{M} with outer bound \mathbb{L}; and 2) we’ve used H_{Bethe} in place of the true dual A^*.

- Example of inaccuracy (example 4.2 from book), consider a 4-clique

\[
\mu_s(x_s) = [0.5 \ 0.5] \quad \text{for } s = 1, 2, 3, 4 \quad (12.68a)
\]

\[
\mu_{st}(x_s, x_t) = \begin{bmatrix} 0.5 & 0 \\ 0 & 0.5 \end{bmatrix} \quad \forall (s, t) \in E(G) \quad (12.68b)
\]

- Valid marginals, equal 0.5 probability for $(0, 0, 0, 0)$ and $(1, 1, 1, 1)$.
Lack of bounds for Bethe

- Two reasons A might be inaccurate: 1) We have replaced \mathbb{M} with outer bound \mathbb{L}; and 2) we’ve used H_{Bethe} in place of the true dual A^*.
- Example of inaccuracy (example 4.2 from book), consider a 4-clique

\[
\mu_s(x_s) = \begin{bmatrix} 0.5 \\ 0.5 \end{bmatrix} \quad \text{for } s = 1, 2, 3, 4 \quad (12.68a)
\]
\[
\mu_{st}(x_s, x_t) = \begin{bmatrix} 0.5 & 0 \\ 0 & 0.5 \end{bmatrix} \quad \forall (s, t) \in E(G) \quad (12.68b)
\]

- Valid marginals, equal 0.5 probability for $(0, 0, 0, 0)$ and $(1, 1, 1, 1)$.
- Each $H_s(\mu_s) = \log 2$, and each $I_{st}(\mu_{st}) = \log 2$ giving

\[
H_{\text{Bethe}}(\mu) = 4\log 2 - 6\log 2 = -2\log 2 < 0 \quad (12.69)
\]
Lack of bounds for Bethe

- Two reasons A might be inaccurate: 1) We have replaced M with outer bound L; and 2) we’ve used H_{Bethe} in place of the true dual A^*.
- Example of inaccuracy (example 4.2 from book), consider a 4-clique

\[
\mu_s(x_s) = [0.5 \ 0.5] \quad \text{for } s = 1, 2, 3, 4 \quad (12.68a)
\]

\[
\mu_{st}(x_s, x_t) = \begin{bmatrix} 0.5 & 0 \\ 0 & 0.5 \end{bmatrix} \quad \forall (s, t) \in E(G) \quad (12.68b)
\]

- Valid marginals, equal 0.5 probability for $(0, 0, 0, 0)$ and $(1, 1, 1, 1)$.
- Each $H_s(\mu_s) = \log 2$, and each $I_{st}(\mu_{st}) = \log 2$ giving

\[
H_{\text{Bethe}}(\mu) = 4\log 2 - 6\log 2 = -2\log 2 < 0 \quad (12.69)
\]

which obviously can’t be a true entropy since we must have $H > 0$ for discrete distributions.
Lack of bounds for Bethe

- Two reasons A might be inaccurate: 1) We have replaced \mathcal{M} with outer bound \mathcal{L}; and 2) we’ve used H_{Bethe} in place of the true dual A^\ast.

- Example of inaccuracy (example 4.2 from book), consider a 4-clique

$$
\mu_s(x_s) = \begin{bmatrix} 0.5 & 0.5 \end{bmatrix} \quad \text{for } s = 1, 2, 3, 4 \quad (12.68a)
$$

$$
\mu_{st}(x_s, x_t) = \begin{bmatrix} 0.5 & 0 \\ 0 & 0.5 \end{bmatrix} \quad \forall (s, t) \in E(G) \quad (12.68b)
$$

- Valid marginals, equal 0.5 probability for $(0, 0, 0, 0)$ and $(1, 1, 1, 1)$.
- Each $H_s(\mu_s) = \log 2$, and each $I_{st}(\mu_{st}) = \log 2$ giving

$$
H_{\text{Bethe}}(\mu) = 4 \log 2 - 6 \log 2 = -2 \log 2 < 0 \quad (12.69)
$$

which obviously can’t be a true entropy since we must have $H > 0$ for discrete distributions.

- True $-A^\ast(\mu) = \log 2 > 0$.
What about $\mathbb{L} \setminus \mathbb{M}$?

- Do solutions to Bethe variational problem (equivalently fixed points of LBP) ever fall into $\mathbb{L}(G) \setminus \mathbb{M}(G)$ (which we know to be non-empty for non-tree graphs)?
What about $\mathbb{L} \setminus \mathbb{M}$?

- Do solutions to Bethe variational problem (equivalently fixed points of LBP) ever fall into $\mathbb{L}(G) \setminus \mathbb{M}(G)$ (which we know to be non-empty for non-tree graphs)?

- Unfortunately, for all $\tau \in \mathbb{L}(G)$, then it can be a fixed point for LBP for some p_θ.

Recall notion of reparameterization: for tree graph, such that we can reparameterize so that the edges and nodes are true marginals. e.g., $\phi_i(x_i) = \sum_{x_i \in V \setminus \{i\}} p(x)$. A goal of inference is to change factors to become true marginals, can’t be done for graphs with cycles in general.

Fixed points of LBP do not get marginal reparameterization but it does get something identical when global renormalized. That is, we have...
What about $L \setminus M$?

- Do solutions to Bethe variational problem (equivalently fixed points of LBP) ever fall into $L(G) \setminus M(G)$ (which we know to be non-empty for non-tree graphs)?
- Unfortunately, for all $\tau \in L(G)$, then it can be a fixed point for LBP for some p_θ. true for Lagrangian optimization as well. 😞
What about $\mathbb{L} \setminus \mathbb{M}$?

Do solutions to Bethe variational problem (equivalently fixed points of LBP) ever fall into $\mathbb{L}(G) \setminus \mathbb{M}(G)$ (which we know to be non-empty for non-tree graphs)?

Unfortunately, for all $\tau \in \mathbb{L}(G)$, then it can be a fixed point for LBP for some p_θ. True for Lagrangian optimization as well. 😞

Recall notion of reparameterization: for tree graph, such that we can reparameterize so that the edges and nodes are true marginals. E.g.,

$$\phi_i(x_i) = \sum_{x_V \setminus \{i\}} p(x).$$
What about $\mathbb{L} \setminus \mathbb{M}$?

- Do solutions to Bethe variational problem (equivalently fixed points of LBP) ever fall into $\mathbb{L}(G) \setminus \mathbb{M}(G)$ (which we know to be non-empty for non-tree graphs)?

- Unfortunately, for all $\tau \in \mathbb{L}(G)$, then it can be a fixed point for LBP for some p_θ. true for Lagrangian optimization as well. 😞

- Recall notion of reparameterization: for tree graph, such that we can reparameterize so that the edges and nodes are true marginals. e.g., $\phi_i(x_i) = \sum_{x \setminus \{i\}} p(x)$. A goal of inference is to change factors to become true marginals, can’t be done for graphs with cycles in general.
What about $\mathcal{L} \setminus \mathcal{M}$?

- Do solutions to Bethe variational problem (equivalently fixed points of LBP) ever fall into $\mathcal{L}(G) \setminus \mathcal{M}(G)$ (which we know to be non-empty for non-tree graphs)?
- Unfortunately, for all $\tau \in \mathcal{L}(G)$, then it can be a fixed point for LBP for some p_θ. true for Lagrangian optimization as well.
- Recall notion of reparameterization: for tree graph, such that we can reparameterize so that the edges and nodes are true marginals. e.g., $\phi_i(x_i) = \sum_{x_{V \setminus \{i\}}} p(x)$. A goal of inference is to change factors to become true marginals, can’t be done for graphs with cycles in general.
- Fixed points of LBP do not get marginal reparameterization but it does get something identical when global renormalized.
What about $\mathcal{L} \setminus \mathcal{M}$?

- Do solutions to Bethe variational problem (equivalently fixed points of LBP) ever fall into $\mathcal{L}(G) \setminus \mathcal{M}(G)$ (which we know to be non-empty for non-tree graphs)?
- Unfortunately, for all $\tau \in \mathcal{L}(G)$, then it can be a fixed point for LBP for some p_θ. True for Lagrangian optimization as well. ☹
- Recall notion of reparameterization: for tree graph, such that we can reparameterize so that the edges and nodes are true marginals. e.g., $\phi_i(x_i) = \sum_{x_{V \setminus \{i\}}} p(x)$. A goal of inference is to change factors to become true marginals, can’t be done for graphs with cycles in general.
- Fixed points of LBP do not get marginal reparameterization but it does get something identical when global renormalized.
- That is, we have
Reparameterization Properties of Bethe Approximation

Proposition 12.6.2

Let $\tau^* = (\tau^*_s, s \in V; \tau^*_{st}, (s, t) \in E(G))$ denote any optimum of the Bethe variational principle defined by the distribution p_θ. Then the distribution defined by the fixed point as

$$p_{\tau^*}(x) \triangleq \frac{1}{Z(\tau^*)} \prod_{s \in V} \tau^*_s(x_s) \prod_{(s, t) \in E(G)} \frac{\tau^*_{st}(x_s, x_t)}{\tau^*_s(x_s)\tau^*_t(x_t)}$$

(12.70)

is a reparameterization of the original. That is, we have $p_\theta(x) = p_{\tau^*}(x)$ for all x.

- For trees, we have $Z(\tau^*) = 1$.
- Form gives strategies for seeing how bad we are doing for any given instance (by, say, comparing marginals) - approximation error (possibly a bound)
What about $\mathbb{L} \setminus \mathbb{M}$?

Consider

$$\theta_s(x_s) = \log \tau_s(x_s) = \log 0.5 \ 0.5] \quad \text{for } s = 1, 2, 3, 4$$

(12.71a)

$$\theta_{st}(x_s, x_t) = \log \frac{\tau_{st}(x_s, x_t)}{\tau_s(x_s) \tau_t(x_t)}$$

$$= \log 4 \left[\begin{array}{cc} \beta_{st} & 0.5 - \beta_{st} \\ 0.5 - \beta_{st} & \beta_{st} \end{array} \right] \forall (s, t) \in E(G) \quad (12.71b)$$

We saw in the pseudo marginals slide that, for a 3-cycle, a choice of parameters that gave us $\tau \in \mathbb{L} \setminus \mathbb{M}$. Is this achievable as fixed point of LBP?

For this choice of parameters, if we start sending messages, starting from the uniform messages, then this will be a fixed point. 😊