Outstanding Reading

- Read chapters 1, and 2 in C&T.
- Read chapter 3 in C&T.
- Read section 11.1,11.3, method of types and universal source coding.
- Read chapter 4.
- Read chapter 5.
Announcements, Assignments, and Reminders

- Reminder: Homework 3 due this Sunday (Feb 5th) at 5:00pm our dropbox (https://catalyst.uw.edu/collectit/dropbox/karna/19164).
- **This homework is long! Don’t wait to start it!**
- Late policy: 10% every 24 hour period that you are late, and no more than 3 days late accepted.
- Lowest grade out of all HW grades is not counted towards final grade (so you can skip one HW with impunity).
- Please do use our discussion board (https://catalyst.uw.edu/gopost/board/karna/25503/) for all questions, so that all will benefit from them being answered.

Class Road Map

- L1 (1/3): Overview, Entropy
- L2 (1/5): Props. Entropy, Mutual Information, KL-Divergence
- L3 (1/10): KL-Divergence, Jensen, properties, Data Proc. Inequality
- L5 (1/17): Fano, AEP
- L6 (1/19): snow
- L6 (1/24): AEP, source coding
- L7 (1/26): Method of Types
- L9 (2/2): HMMs, coding
- L10 (2/7): Coding,
- L10 (2/7): Coding,
- L11 (2/9): midterm discussion
- L12 (2/14): Midterm
- L13 (2/16):
- L14 (2/21):
- L15 (2/23):
- L16 (2/28):
- L17 (3/1):
- L18 (3/6):
- L19 (3/8):

Finals Week: March 12th–16th.
Universal Source Coding

- If we know $p(x)$, then we will be able to develop a code to compress sources generated by $p(x)$. Huffman, Lempel-Ziv, etc. are codes that, as we will soon see, do that.
- What if we don’t know $p(x)$?
- Q: do there exist codes that can compress without knowing $p(x)$ and that do so down to the entropy limit?
- Q: can we compress down to the rate R (in units of bits per source symbol) if $R > H(Q)$? (this is Shannon’s source coding theorem)
- What happens if $R < H(Q)$? (this is the converse of Shannon’s source coding theorem)
- We’ll formally prove this theorem using the method of types.

Fixed rate block code of rate R

- An (M, n) code is one that uses M code words for n source symbols.
- Such a code thus has rate of $R = \log \frac{M}{n}$ bits per source symbol. So we need $\log M = nR$ bits to index this code.
- Then a code is defined as follows:

Definition 2.1 (fixed rate block code of rate R)

Let $X_1, X_2, \ldots, X_n \sim Q$, i.i.d. but Q unknown. We have encoder and decoder functions as follows:

Encoder: $f_n : \mathcal{X}^n \to \{1, 2, \ldots, 2^{nR}\}$ \hspace{1cm} (1)

Decoder: $\phi_n : \{1, 2, \ldots, 2^{nR}\} \to \mathcal{X}^n$ \hspace{1cm} (2)

and probability of error

$$P_e^{(n)} = Q^n\left(\{x_{1:n} : \phi_n(f_n(x_{1:n})) \neq x_{1:n}\}\right)$$ \hspace{1cm} (3)

- Notation: $(M, n) = (2^{nR}, n)$ designates a series (in n) of such codes.
Universal Code

Definition 2.2 (Universal rate R block code)

A rate R block code for a source is universal if the functions f_n and ϕ_n do not depend on the source distribution Q and if

$$P_e^{(n)} \to 0 \text{ as } n \to \infty \text{ whenever } H(Q) < R \quad (4)$$

- So we require the “ability to code” at rate R, which really means code without error, or the error goes to zero for larger block length.
- We next state and prove one of Shannon’s main theorems.
- If $R > H(Q)$, then there exists a sequence (n) of codes with the error of becoming vanishingly small.
- Conversely, if $R < H(Q)$, then the error goes to 1.

Source Coding Theorem

Theorem 2.3 (Shannon’s Source Coding Theorem)

\exists a sequence $(2^{nR}, n)$ of universal source codes such that $P_e^{(n)} \to 0$ for all source distributions Q such that $H(Q) < R$.

- Conversely, if $R < H(Q)$ then $P_e^{(n)} \to 1$.
- So entropy is a good measure of the “information” in a source.
- Can you compress a compressed file? $\text{gzip(gzip(gzip(...gzip(x))))}$
- Once a source is compressed to the the entropy rate, it is uncompressible, it is at its entropy limit.
- It looks like a random string of bits.
- How can we tell the difference? The code is the key, both figuratively and literally.
Stochastic Processes: definition brief summary

- Stationary stochastic process, statistics don’t change when we shift time.
- Markov process (model): future and past independent given the present, or immediate past is sufficient to render more distant past irrelevant.
- (time) homogeneous: parameters of Markov chain don’t change with time.
- irreducible: it is possible to get from any state to any other state eventually.
- periodic: greatest common divisor of the time intervals where return is possible is > 1.
- More facts about Markov chains and stochastic processes: Great source is the text: see “Probability and Random Processes”, Grimmett and Stirzaker.

Entropy rates

- Two definitions of entropy rates.

Definition 2.4

The entropy rate of a stochastic process $\{X_i\}_i$ is defined as

$$H(X) \triangleq \lim_{n \to \infty} \frac{1}{n} H(X_1, X_2, \ldots, X_n)$$ \hspace{1cm} (5)

when it exists.

Definition 2.5

Again, assume a stochastic process and define the following rate:

$$H'(X) \triangleq \lim_{n \to \infty} H(X_n | X_{n-1}, X_{n-2}, \ldots, X_1)$$ \hspace{1cm} (6)

assuming it exists.
Entropy rates or entropy rate

- Rates are the same

Theorem 2.6

We have that for stationary stochastic processes

\[
\lim_{n \to \infty} H(X_n | X_{n-1}, X_{n-2}, \ldots, X_1) \triangleq H'(\mathcal{X})
\]

\[= H(\mathcal{X}) \triangleq \lim_{n \to \infty} \frac{1}{n} H(X_1, X_2, \ldots, X_n)
\]

What is entropy of this random walk

- So, the entropy of the random walk is

 \[H(\mathcal{X}) = \text{(overall edge uncertainty)} - \text{(overall node uncertainty in stationary condition)}\]

- Intuition: As node entropy decreases while keeping edge uncertainty constant, the network becomes more concentrated,

- fewer nodes are hubs, and the hubs that remain are widely connected (since edge entropy is fixed).

- In such case (few well connected hubs), it is likely one will land on such a hub (in a random walk) and then will be faced with a wide variety of choice as to where to go next \(\Rightarrow\) increase in overall uncertainty of the walk.

- If node entropy goes up with edge entropy fixed, then many nodes are hubs all with relatively low connectivity, so hitting them doesn’t provide much choice \(\Rightarrow\) random walk entropy goes down.
Hidden Markov models (HMMs)

- An HMM is a distribution $p(X_{1:n}, Y_{1:n})$ over $2n$ random variables that factors in a particular way.
- Easiest way to depict all of the factorization properties is to use a graphical model, as in the below, where $n = 5$:

![Graphical Model]

- Let Y_1, Y_2, \ldots, Y_n be a stationary Markov chain.
- Let $X_{1:n}$ be a random function of this Markov chain. I.e.,

$$X_i = \begin{cases}
\phi_1(Y_i) & \text{with probability } p_1 \\
\phi_2(Y_i) & \text{with probability } p_2 \\
\vdots & \\
\phi_m(Y_i) & \text{with probability } p_m
\end{cases} = \phi_N(X_i) \quad (9)$$

where $N \in \{1, 2, \ldots, m\}$ itself is a random variable.

HMMs

- Note that the stochastic process $X_1, X_2 \ldots$ does not form a Markov chain in general. Why? because it does not satisfy the first order Markov assumption, nor any order Markov assumption in general.
- If $\{Y_i\}_i$ is stationary, then is $\{X_i\}_i$ a stationary stochastic process? Yes. Possible HW problem, so no more given here.
- We can compute the entropy rate of $\{X_i\}_i$, i.e.,

$$H(X) = \lim_{n \to \infty} H(X_n | X_{n-1}, \ldots, X_1)$$

but it is ugly, so instead we compute upper and lower bounds.
- Upper bound(s):

$$H(X_n | X_{n-1}, \ldots, X_1) = H(X_{n+1} | X_n, \ldots, X_2) \geq H(X_{n+1} | X_1, \ldots, X_n) \quad (10)$$

$$\geq H(X_{n+2} | X_{n+1}, \ldots, X_1) \geq \cdots \geq H(X) \quad (11)$$
A lower bound is given by $H(X_n|X_{n-1}, \ldots, X_2, Y_1) \leq H(X)$ because

$$H(X_n|X_{n-1}, \ldots, X_2, Y_1) = H(X_n|X_{n-1}, \ldots, X_2, X_1, Y_1)$$

$$= H(X_n|X_{n-1}, \ldots, X_1, Y_1, Y_0, Y_{-1}, \ldots, Y_{-k})$$

$$= H(X_n|X_{n-1}, \ldots, X_1, Y_1, Y_0, Y_{-1}, \ldots, Y_{-k}, X_0, \ldots, X_{-k})$$

$$\leq H(X_n|X_{n-1}, \ldots, X_1, X_0, \ldots, X_{-k})$$

$$= H(X_{n+k+1}|X_{n+k}, \ldots, X_1)$$

(12)

(13)

(14)

(15)

So summarizing the bounds on the HMM information rates, we have

$$H(X_n|X_{n-1}, \ldots, X_1, Y_1) \leq H(X) \leq H(X_n|X_{n-1}, \ldots, X_1)$$

(16)

Lemma 3.1 (ever shrinking sandwich)

$$H(X_n|X_{n-1}, \ldots, X_1) - H(X_n|X_{n-1}, \ldots, X_1, Y_1) \to 0$$

(17)

Proof.

$$H(X_n|X_{n-1}, \ldots, X_1) - H(X_n|X_{n-1}, \ldots, X_1, Y_1)$$

$$= I(X_n; Y_1|X_{n-1}, \ldots, X_1) \leq H(Y_1)$$

(18)

Also, $I(Y_1; X_1, \ldots, X_n) \leq H(Y_1)$ for all n.

Now,

$$\lim_{n \to \infty} I(Y_1; X_1, \ldots, X_n) = \lim_{n \to \infty} \sum_{i=1}^{n} I(Y_1; X_i|X_{1:i-1})$$

$$= \sum_{i=1}^{\infty} I(Y_1; X_i|X_{1:i-1}) \leq H(Y) < \infty$$

(19)

(20)

So an infinite sum is constant, must mean the terms $\to 0$ as $n \to \infty$.

Thus, each of the terms $I(Y_1; X_i|X_{1:i-1}) \to 0$ as $n \to \infty$. □
HMM rate summary

- Summarizing, we have

\[
\lim_{n \to \infty} H(X_n | X_{n-1}, \ldots, X_1, Y_1) = H(X) = \lim_{n \to \infty} H(X_n | X_{n-1}, \ldots, X_1)
\]

(21)

Coding

- New topic: coding, meaning practical lossless coding of information sources governed by a distribution.
- Shannon’s source coding theorem said we can code using \(R > H(X) \) bits per source symbol if we use long enough block.
- These were “block” codes in that we store and/or transfer one block of symbols at a time, but such codes are not always practical.
- We seek other coding strategies.
- **variable length symbol codes**: One symbol at a time is encoded. Variable length (rather than fixed length) code words. Ex: Huffman coding.
- **Stream codes**: codes that operate on data coming in as a stream and decide codeword depending on current symbol and history. Ex: Arithmetic codes, Lempel-Ziv code (the latter of which is Universal since it does not require \(p(x) \)).
Definition 4.1 (source code)
A source code C for r.v. X is a mapping
\[C : \mathcal{X} \rightarrow \mathcal{D}^* \] (22)
from \mathcal{X} to \mathcal{D}^*, the set of finite strings from a D-ary alphabet. $C(x)$ is the codeword corresponding to x, and $\ell(x)$ is the length of the codeword.

Example 4.2
Let $\mathcal{X} = \{\text{red}, \text{blue}\}$. Then a code might be $C(\text{red}) = 00$ and $C(\text{blue}) = 11$, which would be a binary code for $\mathcal{D} = \{0, 1\}$.

Definition 4.3 (expected length)
The expected length $L(C)$ of code C for r.v. X with distribution $p(x)$ is
\[L(C) = \sum_x p(x)\ell(x) \] (23)

Codes

- Assume $\mathcal{D} = \{0, 1, 2, \ldots, D - 1\}$ in general (but often $D = 2$).
- Another code,

Example 4.4

<table>
<thead>
<tr>
<th>x</th>
<th>$p(x)$</th>
<th>$c(x)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>$\frac{1}{2}$</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>$\frac{1}{4}$</td>
<td>10</td>
</tr>
<tr>
<td>3</td>
<td>$\frac{1}{8}$</td>
<td>110</td>
</tr>
<tr>
<td>4</td>
<td>$\frac{1}{8}$</td>
<td>111</td>
</tr>
</tbody>
</table>

- In this case, $H(X) = 1.75$. But $L(C) = E\ell(X) = 1.75$, so this code is pretty good.
- Moreover, it is easy to code. What source symbols correspond to the string 0101101101110100? 1, 2, 3, 4, 4, 3, 2, 1
- With punctuation: 0,10,110,111,111,110,10,0, so code in some sense is “self punctuating”
Aside: English

- isenglishselfpunctuating

How long does it take you to read this sentence that is written without any punctuation marks or even end of sentence marks such as a question mark or even inter-sentence spaces?

- nowhere = “now, here” or “no, where”?

Prof. Jeff Bilmes
Page 21
Another code

- Here, $\mathcal{X} = \{1, 2, 3\}$ and $\mathcal{D} = \{0, 1\}$
- Code is:

<table>
<thead>
<tr>
<th>x</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>$p(x)$</td>
<td>1/3</td>
<td>1/3</td>
<td>1/3</td>
</tr>
<tr>
<td>$C(X)$</td>
<td>0</td>
<td>10</td>
<td>11</td>
</tr>
</tbody>
</table>

- So $H = 1.58$ but $E\ell(X) = 1.66 > H$ bits.
- Can we easily decode? $10110010 = 2,3,1,1,2$

Ex: Morse Code

- Morse code, series of dots and dashes to represent letters
- most frequent letter sent with the shortest code, 1 dot
- Note: codewords might be prefixes of each other (e.g., “E” and “F”).
- uses only binary data (single current telegraph, size two “alphabet”), could use more (three, double current telegraph), but this is more susceptible to noise (binary in computer rather than ternary).
Set of codes

- For $\mathcal{X} = \{1, 2, 3, 4\}$ and binary code, consider the following 4 codes.

<table>
<thead>
<tr>
<th>x</th>
<th>$p(x)$</th>
<th>C_I</th>
<th>C_{II}</th>
<th>C_{III}</th>
<th>C_{IV}</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.5</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>0.25</td>
<td>0</td>
<td>1</td>
<td>10</td>
<td>01</td>
</tr>
<tr>
<td>3</td>
<td>0.125</td>
<td>1</td>
<td>00</td>
<td>110</td>
<td>011</td>
</tr>
<tr>
<td>4</td>
<td>0.125</td>
<td>10</td>
<td>11</td>
<td>111</td>
<td>0111</td>
</tr>
</tbody>
</table>

$H(X) = 1.75$
$E\ell(X) = -1.125, 1.25, 1.75, 1.875$

- Code efficiency $= H(X) / E\ell(X)$.

Which code is best? The one with the shortest expected length is generally preferable, and so would we prefer C_I or C_{II}?

- But how can the expected length be smaller than entropy?

Consider C_I and decode string: 00001. It could come from 1,2,1,2,3 or 2,1,2,1,3 or 1,1,1,1,3, or etc. This code is undesirable since we can’t decode, or if we try we will have errors with very high probability.

Consider C_{II}. How would we decode 0011? Could be either 1,1,2,2 or 3,4, so again we can’t decode without a probability of error (and the longer the sequence the probability of error goes to 1).

Consider C_{III}. This code seems at least feasible (since $E\ell \geq H$).

Decoding seems easy: (e.g., 111110100 = 111,110,10,0 = 4,3,2,1) seems like every string we encounter easily gets to the end of a codeword before going to next codeword.
Set of codes

<table>
<thead>
<tr>
<th>x</th>
<th>$p(x)$</th>
<th>C_I</th>
<th>C_{II}</th>
<th>C_{III}</th>
<th>C_{IV}</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.5</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>0.25</td>
<td>0</td>
<td>1</td>
<td>10</td>
<td>01</td>
</tr>
<tr>
<td>3</td>
<td>0.125</td>
<td>1</td>
<td>00</td>
<td>110</td>
<td>011</td>
</tr>
<tr>
<td>4</td>
<td>0.125</td>
<td>10</td>
<td>11</td>
<td>111</td>
<td>0111</td>
</tr>
</tbody>
</table>

$H(X) = 1.75$ - - - -

$E\ell(X) = - 1.125 1.25 1.75 1.875$

- Consider C_{IV}. Can we decode 00000000111? Yes, but if we only see a prefix, such as 01, we don’t know until we see more bits what source symbol it is.

- Note that C_I above is singular.

Code types

Definition 4.5 (non-singular)

A code is said to be non-singular if every element of the range of X (i.e., all elements of \mathcal{X}) maps to a different string in \mathcal{D}^*. I.e.,

$$x_i \neq x_j \Rightarrow C(x_i) \neq C(x_j)$$

- We can view this as a mapping. It is less strict than onto but sufficient for being able to decode individual symbols.

- Note that C_I above is singular.
Our goal

- Before going further, note: our goal is to send or store a sequence of code words for a sequence of symbols.
- A non-singular code could be unique if ∃ a comma between code words (e.g., Morse code is such that there is a space).
- In general, however, it is better to have a self punctuating or instantaneous code.

Definition 4.6 (code extension)

A code extension \(C^* \) of \(C \) is a mapping from finite length strings of \(D \), defined as:

\[
C(x_1, x_2, \ldots, x_n) = C(x_1)C(x_2)\ldots C(x_n)
\]

(25)

- Note that there are no commas in the extension, rather concatenation.
- Ex: If \(C(x_1) = 0 \) and \(C(x_2) = 1 \) then \(C(x_1, x_2) = 01 \).

Code types

Definition 4.7 (uniquely decodable)

A code \(C \) with extension \(C^* \) is uniquely decodable if the extension \(C^* \) is non-singular.

- \(C \) singular. Extension to \(C^{II} \) singular so \(C^{II} \) not uniquely decodable.
- But how long must we wait until we know the source? In some even uniquely decodable cases, we might need to wait until the end.
- Ex: consider the code

<table>
<thead>
<tr>
<th>(x)</th>
<th>(C(x))</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>10</td>
</tr>
<tr>
<td>2</td>
<td>00</td>
</tr>
<tr>
<td>3</td>
<td>11</td>
</tr>
<tr>
<td>4</td>
<td>110</td>
</tr>
</tbody>
</table>

- Code string: 1100000000 = 3,2,2,2,2
- Code string: 11000000000 = 4,2,2,2,2
- So we don’t know identity of first symbol until end of code string. 😊.
Prefix codes

Definition 4.8 (prefix code)
A code is called a prefix code or an instantaneous code if no codeword is a prefix of any other codeword.

- We know the end of a codeword because it can’t be a prefix of any other codeword.
- Code in previous page is not prefix free, 11 was a prefix of 110 so we couldn’t decide between 11 or 110 until we could count the number of zeros.
- A prefix code is self-punctuating (since there are implicit punctuation marks between codewords).
- Prefix code \Rightarrow uniquely decodable. But (as we saw) uniquely decodable $\not\Rightarrow$ prefix code.

Code classes

- Goal is to find a code with the shortest possible expected length.
- From the above code class, we might think that we want to use codes from the largest class possible (since we might think we’re more likely to get shorter codes).
- We can do better than entropy with non-singular codes, but we want lossless encoding $x = \text{ungzip}(\text{gzip}(x))$.
Kraft inequality

Theorem 4.9 (Kraft inequality)

For any instantaneous code (prefix code) over alphabet of size D, the codeword lengths $\ell_1, \ell_2, \ldots, \ell_m$ must satisfy

$$\sum_i D^{-\ell_i} \leq 1$$

Conversely, given a set of codeword lengths satisfying the above inequality, \exists an instantaneous code with these word lengths.

- Note what the converse is saying: there exists a code with these lengths, not that all codes with these lengths will satisfy the inequality.
- Key point: for ℓ_i satisfying Kraft, no further restriction imposed by also wanting a prefix code, so we might as well use a prefix code (assuming it is easy to find given the lengths)

Proof of Kraft inequality.

- Represent the set of codes on a D-ary tree, as in:

```
          1
         /|
        /2 \\
      1\ 2 D
```

- Codewords correspond to leaves
- Path from root to leaf determines a codeword
- Prefix condition: won’t get to a codeword until we get to a leaf (no descendants of codewords are codewords)
Kraft inequality

...proof of Kraft inequality cont.

- $\ell_{\text{max}} = \max_i (\ell_i)$ is the length of the longest codeword.
- We can expand the full-tree down to depth ℓ_{max}.

Some nodes at that level ℓ_{max} are either:

1. codewords,
2. descendants of codewords, or
3. neither

- Consider a codeword i at level ℓ_i in tree (so it has length ℓ_i).
- Then, there are $D^{\ell_{\text{max}} - \ell_i}$ descendants in the tree at level ℓ_{max}.
- Because of prefix condition, descendants of code i at level ℓ_i are disjoint from descendants of code j at level ℓ_j when $i \neq j$ (i.e., descendant sets for different codewords are disjoint).
- Also, total number of nodes in set of all descendants is $\leq D^{\ell_{\text{max}}}$.

All of the above implies:

$$\sum_i D^{\ell_{\text{max}} - \ell_i} \leq D^{\ell_{\text{max}}} \Rightarrow \sum_i D^{-\ell_i} \leq 1 \quad (27)$$

Conversely: given codeword lengths $\ell_1, \ell_2, \ldots, \ell_m$ satisfying Kraft inequality (we must construct a prefix code with these lengths).

- Consider a full D-ary tree of depth ℓ_{max} with $D^{\ell_{\text{max}}}$ terminal nodes.
- @ level 0 \exists fraction 1 of the descendants at each node at that level,
- @ level 1 \exists fraction $1/D$ descendants at each node at that level, etc.
- In general, at each level $i \in [0, \ell_{\text{max}}]$ in tree, there is a fraction D^{-i} terminal nodes that are descendants that stem from each of the D^i nodes at level i.
Kraft inequality

\ldots proof of Kraft inequality cont.

- Sort the lengths \((\ell_1, \ell_2, \ldots, \ell_m)\) to \((s_1, s_2, \ldots, s_m)\) with
 \(s_1 \leq s_2 \leq \cdots \leq s_m\). Note there are as many lengths as there are
codewords.
- For length \(s_1\) chose any node at level \(s_1\) to indicate the code.
- To ensure prefix free property, the node becomes a terminal node,
 thus eliminating a fraction \(D^{-s_1}\) of the terminal nodes at depth \(\ell_{\max}\)
 (which would have been potential code words of longer length, but
 now they are out of the running).
- Next: chose any remaining node at level \(s_2\), thus eliminating a
 fraction \(D^{-s_2}\) of the nodes.
- Total eliminated is \(D^{-s_1} + D^{-s_2}\).

Continuing this process, we eliminate a fraction \(\sum_{i=1}^{m} D^{-s_i}\) of the
nodes, while retaining that the code is instantaneous (a codeword
can't be a prefix of another).
- But since by assumption \(\sum_{i=1}^{m} D^{-s_i} \leq 1\) we never eliminate all of
 the codewords, so this process won’t run out of codewords.
- Thus, we have created a prefix-free code with the desired lengths.

...
Infinite Kraft

Theorem 4.10 (countably infinite Kraft)

For any countably infinite set of codewords that form a prefix set, this satisfies the extended Kraft inequality, i.e.

\[
\sum_{i=1}^{\infty} D^{-\ell_i} \leq 1
\]

(28)

Conversely, given \(\ell_i \) satisfying the above, \(\exists \) a prefix code with these lengths.

Proof of countably infinite Kraft.

- Assume we have such a prefix code, and let the \(D \)-ary alphabet be \(\{0, 1, \ldots, D - 1\} \).
- Consider the \(i \)th codeword \(y_1, y_2, \ldots, y_{\ell_i} \).

Kraft inequality

...proof of infinite Kraft.

- Consider expansion of codeword using binary fractional digits:

\[
0.y_1y_2y_3 \ldots y_{\ell_i} = \sum_{j=1}^{\ell_i} y_j D^{-j}
\]

(29)

- Examples: When \(D = \{0, 1\} \) then 0.1 = 1/2, 0.01 = 1/4, 0.11 = 3/4, and 0.001 = 1/8 (so bits are after the binary point).
- Associate each codeword \(y_1: \ell_i \) with the half-open interval on the real line \([0.y_1y_2 \ldots y_{\ell_i}, 0.y_1y_2 \ldots y_{\ell_i} + 1/D^{\ell_i}]\)
- Example: With \(D = 10 \), then if 0.y_1y_2y_3 = 0.157, the associated half-open interval is \([0.157, 0.158)\), and if 0.y_1y_2y_3 = 0.159, the associated half-open interval is \([0.159, 0.160)\).
Kraft inequality

...proof of infinite Kraft.

- So the interval for codeword $y_1y_2y_3 \ldots y_\ell$ corresponds to the set of all real numbers that begins with $0.y_1y_2y_3 \ldots y_\ell$ and is thus a sub-interval of the unit interval.
- Also $y_1y_2y_3 \ldots y_\ell$ is not a prefix of any other codeword, so the intervals must be disjoint.
- Length of interval for codeword $y_1y_2y_3 \ldots y_\ell$ is $D^{-\ell}$.
- And since all intervals live in $[0, 1)$ we must have
 \[
 \sum_i D^{-\ell_i} \leq 1 \tag{30}
 \]
- Proof of converse is similar to finite case and also to arithmetic coding that we'll soon see, so we skip the proof here.

Towards Optimal Codes

- Summarizing: Prefix code \iff Kraft inequality.
- Thus, we need only find lengths that satisfy Kraft to find a prefix code.
- Goal: find a prefix code with minimum expected length
 \[
 L(C) = \sum_i p_i \ell_i \tag{31}
 \]
- This is a constrained optimization problem:
 \[
 \min_{\{\ell_1:m\} \in \mathbb{Z}^+} \sum_i p_i \ell_i \tag{32}
 \]
- subject to $\sum_i D^{-\ell_i} \leq 1$
- Linear integer program is an NP-complete optimization, not likely to be efficiently solvable (unless $P=NP$).
Towards Optimal Codes

- Relax the integer constraints on ℓ_i for now, and consider Lagrangian

$$J = \sum_i p_i \ell_i + \lambda \left(\sum_i D^{-\ell_i} - 1 \right)$$ \hspace{1cm} (33)

- Taking derivatives and setting to 0,

$$\frac{\partial J}{\partial \ell_i} = p_i - \lambda D^{-\ell_i} \ln D = 0$$ \hspace{1cm} (34)

$$\Rightarrow D^{-\ell_i} = \frac{p_i}{\lambda \ln D}$$ \hspace{1cm} (35)

$$\frac{\partial J}{\partial \lambda} = \sum_i D^{-\ell_i} - 1 = 0 \quad \Rightarrow \quad \lambda = 1 / \ln D$$ \hspace{1cm} (36)

$$\Rightarrow D^{-\ell_i} = p_i \quad \text{yielding} \quad \ell_i^* = - \log_D p_i$$ \hspace{1cm} (37)

This implies that:

$$L^* = \sum_i p_i \ell_i^* = - \sum_i p_i \log_D p_i = H_D(X) = H(X) / \log D$$ \hspace{1cm} (38)

- So the optimal expected code length, as a result of this optimization process, is the entropy assuming that we are allowed to have fractional code lengths

- Since $\ell_i^* = - \log_D p_i$, this means that optimal code “length” (while fractional) is the same as the information about the event. I.e., shortest possible coding length is the inherent information about an event. This is like the MDL (minimum description principle), tries to find the simplest explanation about a source.

- Compare fractional codeword lengths to long block codes, what is the relation?
Theorem 4.11

Entropy is the minimum expected length. That is, the expected length L of any instantaneous D-ary code (thus satisfying Kraft) for a r.v. X is such that

$$L \geq H_D(X)$$

with equality iff $D^{-\ell_i} = p_i$.

Proof.

next time