Outstanding Reading

- Read chapters 1, and 2 in C&T.
- Read chapter 3 in C&T.
- Read section 11.1,11.3, method of types and universal source coding.
- Read chapter 4.
Announcements, Assignments, and Reminders

- Reminder: Homework 3 due next Sunday (Feb 5th) at 5:00pm our dropbox (https://catalyst.uw.edu/collectit/dropbox/karna/19164).

- This homework is long! Don’t wait to start it!

- Late policy: 10% every 24 hour period that you are late, and no more than 3 days late accepted.

- Lowest grade out of all HW grades is not counted towards final grade (so you can skip one HW with impunity).

- Please do use our discussion board (https://catalyst.uw.edu/gopost/board/karna/25503/) for all questions, so that all will benefit from them being answered.
Class Road Map

- L1 (1/3): Overview, Entropy
- L2 (1/5): Props. Entropy, Mutual Information, KL-Divergence
- L3 (1/10): KL-Divergence, Jensen, properties, Data Proc. Inequality
- L5 (1/17): Fano, AEP
- L6 (1/19): snow
- L6 (1/24): AEP, source coding
- L7 (1/26): Method of Types
- L9 (2/2):
- L11 (2/7):
- L12 (2/9):
- L13 (2/14): Midterm
- L14 (2/16):
- L15 (2/21):
- L16 (2/23):
- L175 (2/28):
- L18 (3/1):
- L19 (3/6):
- L20 (3/8):

Finals Week: March 12th–16th.
Definition: the “type” of the sample

Let \(X_1, X_2, \ldots, X_n \equiv X_{1:n} \) be a length-\(n \) sample of a D-ary discrete random variable. So \(x_i \in \mathcal{X} \) and alphabet size \(D = |\mathcal{X}| \), and \(\mathcal{X} = (a_1, a_2, \ldots, a_D) \).

Define a statistic which is the empirical histogram of this sample.

\[
P_{x_{1:n}} \triangleq \left(\frac{n(a_1|x_{1:n})}{n}, \frac{n(a_2|x_{1:n})}{n}, \ldots, \frac{n(a_D|x_{1:n})}{n} \right) \tag{1}
\]

where \(n(a_i|x_{1:n}) \) counts occurrence of symbol \(a_i \) in sample \(x_{1:n} \).

Define \(\mathcal{P}_n \) be the set of all possible types with denominator \(n \).

A given type is \(P \in \mathcal{P}_n \).

Type class, for \(P \in \mathcal{P}_n \), is \(T(P) \). I.e.,

\[
T(P) \triangleq \{ x_{1:n} \in \mathcal{X}^n : P_{x_{1:n}} = P \} \tag{2}
\]

set of all sequences of length \(n \) having a certain histogram \(P \).
Notational Summary

- For sequences of length n:
- the type (or histogram) of a sample $x_{1:n}$

$$P_{x_{1:n}} \triangleq \left(\frac{n(a_1|x_{1:n})}{n}, \frac{n(a_2|x_{1:n})}{n}, \ldots, \frac{n(a_D|x_{1:n})}{n} \right); \quad (3)$$

- the set of all types (or histograms) \mathcal{P}_n;
- Some particular type $P \in \mathcal{P}_n$.
- For a given type P, the set of all sequences with that type $T(P)$.

Division of set of all sequences into type classes

- \(\mathcal{P}_n = \{ P_1, P_2, \ldots, P_{|\mathcal{P}_n|} \} \) is the set of all types,
- Thus, \(\bigcup_{P \in \mathcal{P}_n} T(P) = \mathcal{X}^n \).
- The space of all sequences.

\(\mathcal{X}^n \) : the set of all sequences of length \(n \)
Division of set of all sequences into type classes

- $\mathcal{P}_n = \{P_1, P_2, \ldots, P_{|\mathcal{P}_n|}\}$ is the set of all types,
- Thus, $\bigcup_{P \in \mathcal{P}_n} T(P) = \mathcal{X}^n$.
- The space of all sequences.

\mathcal{X}^n: partitioned into blocks within which all sequences have the same type.

![Diagram](image-url)
Bound on number of type classes

Proposition 2.1

\[|\mathcal{P}_n| \leq (n + 1)|\mathcal{X}| \]
Bound on number of type classes

Proposition 2.1

\[|\mathcal{P}_n| \leq (n + 1)|\mathcal{X}| \]
Probability depends only on the type

Theorem 2.2

- Let X_1, X_2, \ldots, X_n be i.i.d. $\sim Q(x)$,
- with extension $Q^n(x_1:n) = \prod_i Q(x_i)$, with Q otherwise arbitrary.
- The probability of the sequence depends only on the type
- restated, the probability is “independent” of the sequence given the type and Q
- That is

$$Q^n(x_1:n) = 2^{-n\left[H(P_{x_1:n}) + D(P_{x_1:n} \| Q)\right]}$$ (5)

- So, probability doesn’t depend on the sequence, once we are given the type
- Compare with sufficient statistics
- all sequences with the same type have the same probability.
Probability depends only on the type

- Corollary: If Q is a rational distribution (i.e., a possible type) and if $x_{1:n} \in T(Q)$, then
 \[Q^n(x_{1:n}) = 2^{-nH(Q)} \]
 a result already familiar to us.

- What if Q was irrational? Intuition: we could make $D(P_{x_{1:n}} || Q)$ as small as we want, if we make n large.
Proposition 2.3

For any type $P \in \mathcal{P}_n$, we have

$$\frac{1}{(n + 1)|\mathcal{X}|} 2^{nH(P)} \leq |T(P)| \leq 2^{nH(P)}$$

(7)
How probable is each type class?

- Notation: $a_n \asymp b_n$ if $\lim_{n \to \infty} \frac{1}{n} \log \frac{a_n}{b_n} = 0$.
How probable is each type class?

- Notation: \(a_n \overset{!}{=} b_n \) if \(\lim_{n \to \infty} \frac{1}{n} \log \frac{a_n}{b_n} = 0 \).

Theorem 2.4

For any \(P \in \mathcal{P}_n \), and any distribution \(Q \), the probability of type class \(T(P) \) under \(Q^n \) is such that \(Q^n(T(P)) \doteq 2^{-nD(P\|Q)} \). Specifically,

\[
\frac{1}{(n+1)|X|} 2^{-nD(P\|Q)} \leq Q^n(T(P)) \leq 2^{-nD(P\|Q)} \quad (8)
\]

Note: so any type less close than the “closest” type to \(Q \) will decrease in probability exponentially (in \(n \)) faster than the most probable type.
How probable is each type class?

- Notation: \(a_n \doteq b_n \) if \(\lim_{n \to \infty} \frac{1}{n} \log \frac{a_n}{b_n} = 0 \).

Theorem 2.4

For any \(P \in \mathcal{P}_n \), and any distribution \(Q \), the probability of type class \(T(P) \) under \(Q^n \) is such that \(Q^n(T(P)) \doteq 2^{-nD(P||Q)} \). Specifically,

\[
\frac{1}{(n + 1)|\mathcal{X}|} 2^{-nD(P||Q)} \leq Q^n(T(P)) \leq 2^{-nD(P||Q)} \quad (8)
\]

Note: so any type less close than the “closest” type to \(Q \) will decrease in probability exponentially (in \(n \)) faster than the most probable type.
Summary of basic theorems

- Number of types with denominator \(n\)
 \[
 |\mathcal{P}_n| \leq (n + 1)|\mathcal{X}|
 \]
 \(9\)

- \(p(x_{1:n})\) depends only on the type (prob. indep. of sample given type)
 \[
 Q^n(x_{1:n}) = 2^{-n}[H(P_{x_{1:n}}) + D(P_{x_{1:n}} \| Q)]
 \]
 \(10\)

- Size of the type class
 \[
 |T(P)| = 2^{nH(P)}
 \]
 \(11\)

- Probability of a type class
 \[
 Q^n(T(P)) = 2^{-nD(P \| Q)}
 \]
 \(12\)
Types with the most probability

- Q: Which types will have the most probability?
- A: Clearly, the ones that are closest to the true distribution.
- The property \(Q^n(T(P)) \doteq 2^{-nD(P\|Q)} \) says that the ones that are farther away will have exponentially smaller probability than the others, as \(n \to \infty \).
- This suggests that “typical set of sequences” applies here as well,
- in fact

Definition 2.5 (typical set of sequences)

Let \(X_1, X_2, \ldots, X_n \) be i.i.d. \(\forall i, x_i \sim Q(x) \). Then the typical set is defined as

\[
T_Q^\epsilon = \{ x_{1:n} : D(P_{x_{1:n}}\|Q) \leq \epsilon \}
\]

(13)

- Intuitively, these are sequences that come from types that are \(\epsilon \)-close to \(Q \) in the KL-sense.
Theorem 2.6

Let X_1, X_2, \ldots, X_n be i.i.d. $\forall i, x_i \sim Q(x)$. Then the probability of the complement of the typical set \bar{T}_Q^ϵ has expression:

$$Q(\bar{T}_Q^\epsilon) = Q(\{x_{1:n} : D(P_{x_{1:n}} \parallel Q) > \epsilon \}) \leq 2^{-n(\epsilon - |X| \frac{\log(n+1)}{n})}$$ (14)

and therefore,

$$D(P_{X_{1:n}} \parallel Q) \xrightarrow{p} 0 \text{ as } n \to \infty$$ (15)

- Intuitively, this means that types that are more than ϵ away from Q have decreasing probability.
- Moreover, the typical set, which ends up for large n being the only thing that occurs without vanishingly small probability, is such that the KL divergence gets between the type and Q quickly gets arbitrarily small.
Universal Source Coding

- If we know $p(x)$, then we will be able to develop a code to compress sources generated by $p(x)$. Huffman, Lempel-Ziv, etc. are codes that, as we will soon see, do that.
Universal Source Coding

- If we know \(p(x) \), then we will be able to develop a code to compress sources generated by \(p(x) \). Huffman, Lempel-Ziv, etc. are codes that, as we will soon see, do that.

- What if we don't know \(p(x) \)?
Universal Source Coding

- If we know $p(x)$, then we will be able to develop a code to compress sources generated by $p(x)$. Huffman, Lempel-Ziv, etc. are codes that, as we will soon see, do that.

- What if we don't know $p(x)$?

- Q: do there exist codes that can compress without knowing $p(x)$ and that do so down to the entropy limit?
Universal Source Coding

- If we know \(p(x) \), then we will be able to develop a code to compress sources generated by \(p(x) \). Huffman, Lempel-Ziv, etc. are codes that, as we will soon see, do that.

- What if we don't know \(p(x) \)?

- Q: do there exist codes that can compress without knowing \(p(x) \) and that do so down to the entropy limit?

- Q: can we compress down to the rate \(R \) (in units of bits per source symbol) if \(R > H(Q) \)? (this is Shannon's source coding theorem)
Universal Source Coding

- If we know $p(x)$, then we will be able to develop a code to compress sources generated by $p(x)$. Huffman, Lempel-Ziv, etc. are codes that, as we will soon see, do that.

- What if we don't know $p(x)$?

- Q: do there exist codes that can compress without knowing $p(x)$ and that do so down to the entropy limit?

- Q: can we compress down to the rate R (in units of bits per source symbol) if $R > H(Q)$? (this is Shannon’s source coding theorem)

- What happens if $R < H(Q)$? (this is the converse of Shannon’s source coding theorem)
Universal Source Coding

If we know $p(x)$, then we will be able to develop a code to compress sources generated by $p(x)$. Huffman, Lempel-Ziv, etc. are codes that, as we will soon see, do that.

What if we don't know $p(x)$?

Q: do there exist codes that can compress without knowing $p(x)$ and that do so down to the entropy limit?

Q: can we compress down to the rate R (in units of bits per source symbol) if $R > H(Q)$? (this is Shannon's source coding theorem)

What happens if $R < H(Q)$? (this is the converse of Shannon's source coding theorem)

We'll formally prove this theorem using the method of types.
Universal Source Coding: intuitive idea from AEP

- Basic idea is similar to the typical set $A_{\varepsilon}^{(n)}$ we’ve already seen: when n is long enough, the only sequences that occur (with non-vanishingly small probability) will be typical.
Universal Source Coding: intuitive idea from AEP

- Basic idea is similar to the typical set $A_c^{(n)}$ we’ve already seen: when n is long enough, the only sequences that occur (with non-vanishingly small probability) will be typical.

- If we encounter such a sequence, it “must” be typical since the only things that occur are typical.
Universal Source Coding: intuitive idea from AEP

- Basic idea is similar to the typical set $A_{c}^{(n)}$ we’ve already seen: when n is long enough, the only sequences that occur (with non-vanishingly small probability) will be typical.
- If we encounter such a sequence, it “must” be typical since the only things that occur are typical.
- Thus, we only encode the things we see, and we count them along the way.
Universal Source Coding: intuitive idea from AEP

- Basic idea is similar to the typical set $A_\epsilon^{(n)}$ we’ve already seen: when n is long enough, the only sequences that occur (with non-vanishingly small probability) will be typical.
- If we encounter such a sequence, it “must” be typical since the only things that occur are typical.
- Thus, we only encode the things we see, and we count them along the way.
- In the end, we’ll need at most $|A_\epsilon^{(n)}| \leq 2^{nH}$ code words for which we can index with nH bits.
Universal Source Coding: intuitive idea from AEP

- Basic idea is similar to the typical set $A_{\epsilon}^{(n)}$ we’ve already seen: when n is long enough, the only sequences that occur (with non-vanishingly small probability) will be typical.
- If we encounter such a sequence, it “must” be typical since the only things that occur are typical.
- Thus, we only encode the things we see, and we count them along the way.
- In the end, we’ll need at most $|A_{\epsilon}^{(n)}|$ code words for which we can index with nH bits.
- We want to formalize Shannon’s theorem and its converse using the method of types.
Universal Source Coding: intuitive idea from types

- There are $2^{nH(P)}$ sequences of type P.

Prof. Jeff Bilmes
Universal Source Coding: intuitive idea from types

- There are $2^{nH(P)}$ sequences of type P.
- Thus, we use $nH(P)$ bits to represent such sequences.
Universal Source Coding: intuitive idea from types

- There are $2^{nH(P)}$ sequences of type P.
- Thus, we use $nH(P)$ bits to represent such sequences.
- If $R > H(P)$, we are easily able to use nR bits to represent such sequences.
Universal Source Coding: intuitive idea from types

- There are $2^{nH(P)}$ sequences of type P.
- Thus, we use $nH(P)$ bits to represent such sequences.
- If $R > H(P)$, we are easily able to use nR bits to represent such sequences.
- As n gets big, only the types P that are “close” to Q will occur.
Universal Source Coding: intuitive idea from types

- There are $2^{nH(P)}$ sequences of type P.
- Thus, we use $nH(P)$ bits to represent such sequences.
- If $R > H(P)$, we are easily able to use nR bits to represent such sequences.
- As n gets big, only the types P that are “close” to Q will occur.
- There are an exponential (in n) number of sequences.
Universal Source Coding: intuitive idea from types

- There are $2^{nH(P)}$ sequences of type P.
- Thus, we use $nH(P)$ bits to represent such sequences.
- If $R > H(P)$, we are easily able to use nR bits to represent such sequences.
- As n gets big, only the types P that are “close” to Q will occur.
- There are an exponential (in n) number of sequences.
- There are only a polynomial (in n) number of types.
Universal Source Coding: intuitive idea from types

- There are $2^{nH(P)}$ sequences of type P.
- Thus, we use $nH(P)$ bits to represent such sequences.
- If $R > H(P)$, we are easily able to use nR bits to represent such sequences.
- As n gets big, only the types P that are “close” to Q will occur.
- There are an exponential (in n) number of sequences.
- There are only a polynomial (in n) number of types.
- Thus, one type must eventually get “all” of the probability.
Universal Source Coding: intuitive idea from types

- There are $2^{nH(P)}$ sequences of type P.
- Thus, we use $nH(P)$ bits to represent such sequences.
- If $R > H(P)$, we are easily able to use nR bits to represent such sequences.
- As n gets big, only the types P that are “close” to Q will occur.
- There are an exponential (in n) number of sequences.
- There are only a polynomial (in n) number of types.
- Thus, one type must eventually get “all” of the probability.
- If $P \approx Q$, and $H(Q) < R$, then all types that actually “occur” can be represented in R bits per source symbol.
Universal Source Coding: intuitive idea from types

- There are $2^{nH(P)}$ sequences of type P.
- Thus, we use $nH(P)$ bits to represent such sequences.
- If $R > H(P)$, we are easily able to use nR bits to represent such sequences.
- As n gets big, only the types P that are “close” to Q will occur.
- There are an exponential (in n) number of sequences.
- There are only a polynomial (in n) number of types.
- Thus, one type must eventually get “all” of the probability.
- If $P \approx Q$, and $H(Q) < R$, then all types that actually “occur” can be represented in R bits per source symbol.
- If $P \approx Q$, and $H(Q) > R$, then types that occur can not be represented in R bits per source symbol.
Our encoder setup

- Recall from earlier our x to y encoder setup.

\[\{X_1, X_2, \ldots, X_n\} \]
\[X_i \in \{a_1, a_2, \ldots, a_K\} \]
\[K^n \text{ possible messages} \]
\[n \text{ letters or alphabet symbols} \]

\[\{Y_1, Y_2, \ldots, Y_m\} \]
\[Y_i \in \{0, 1\} \]
\[2^m \text{ possible messages} \]
\[m \text{ total bits} \]
(M, n) codes

- Fixed rate block code of rate R.
\((M, n)\) codes

- Fixed rate block code of rate \(R\).
- There are \(M\) code words, \(M = \text{number of possible messages}\).
(M, n) codes

- Fixed rate block code of rate R.
- There are M code words, $M =$ number of possible messages.
- There are n source symbols encoded at a time in each code word.
Fixed rate block code of rate R.

There are M code words, $M =$ number of possible messages.

There are n source symbols encoded at a time in each code word.

An encoder maps from length-n strings of source symbols to length-m bit strings.
(M, n) codes

- **Fixed rate block code of rate** R.
- There are M code words, $M =$ number of possible messages.
- There are n source symbols encoded at a time in each code word.
- An encoder maps from length-n strings of source symbols to length-m bit strings.

The rate R of the code depends on M and n

\[
R = \frac{\log M}{n} = \frac{\log(\# \text{ of code words})}{\# \text{ of source symbols}} \tag{16}
\]
Fixed rate block code of rate R

- An (M, n) code is one that uses M code words for n source symbols.
Fixed rate block code of rate R

- An (M, n) code is one that uses M code words for n source symbols.
- Such a code thus has rate of $R = \frac{\log M}{n}$ bits per source symbol. So we need $\log M = nR$ bits to index this code.
Fixed rate block code of rate R

- An (M, n) code is one that uses M code words for n source symbols.
- Such a code thus has rate of $R = \frac{\log M}{n}$ bits per source symbol. So we need $\log M = nR$ bits to index this code.
- Then a code is defined as follows:
Fixed rate block code of rate R

- An (M, n) code is one that uses M code words for n source symbols.
- Such a code thus has rate of $R = \frac{\log M}{n}$ bits per source symbol. So we need $\log M = nR$ bits to index this code.
- Then a code is defined as follows:

Definition 3.1 (fixed rate block code of rate R)

Let $X_1, X_2, \ldots, X_n \sim Q$, i.i.d. but Q unknown. We have encoder and decoder functions as follows:
Fixed rate block code of rate R

- An (M, n) code is one that uses M code words for n source symbols.
- Such a code thus has rate of $R = \frac{\log M}{n}$ bits per source symbol. So we need $\log M = nR$ bits to index this code.
- Then a code is defined as follows:

Definition 3.1 (fixed rate block code of rate R)

Let $X_1, X_2, \ldots, X_n \sim Q$, i.i.d. but Q unknown. We have encoder and decoder functions as follows:

Encoder: $f_n : \mathcal{X}^n \to \{1, 2, \ldots, 2^{nR}\}$ \hspace{1cm} (17)

(18)
Fixed rate block code of rate R

- An (M, n) code is one that uses M code words for n source symbols.
- Such a code thus has rate of $R = \frac{\log M}{n}$ bits per source symbol. So we need $\log M = nR$ bits to index this code.
- Then a code is defined as follows:

Definition 3.1 (fixed rate block code of rate R)

Let $X_1, X_2, \ldots, X_n \sim Q$, i.i.d. but Q unknown. We have encoder and decoder functions as follows:

Encoder: $f_n : \mathcal{X}^n \rightarrow \{1, 2, \ldots, 2^{nR}\}$

Decoder: $\phi_n : \{1, 2, \ldots, 2^{nR}\} \rightarrow \mathcal{X}^n$
Fixed rate block code of rate R

- An (M, n) code is one that uses M code words for n source symbols.
- Such a code thus has rate of $R = \frac{\log M}{n}$ bits per source symbol. So we need $\log M = nR$ bits to index this code.
- Then a code is defined as follows:

Definition 3.1 (fixed rate block code of rate R)

Let $X_1, X_2, \ldots, X_n \sim Q$, i.i.d. but Q unknown. We have encoder and decoder functions as follows:

Encoder: $f_n : \mathcal{X}^n \rightarrow \{1, 2, \ldots, 2^{nR}\}$

Decoder: $\phi_n : \{1, 2, \ldots, 2^{nR}\} \rightarrow \mathcal{X}^n$

and probability of error

$$P_e^{(n)} = Q^n(\{x_{1:n} : \phi_n(f_n(x_{1:n})) \neq x_{1:n}\})$$
Fixed rate block code of rate R

- An (M, n) code is one that uses M code words for n source symbols.
- Such a code thus has rate of $R = \frac{\log M}{n}$ bits per source symbol. So we need $\log M = nR$ bits to index this code.
- Then a code is defined as follows:

Definition 3.1 (fixed rate block code of rate R)

Let $X_1, X_2, \ldots, X_n \sim Q$, i.i.d. but Q unknown. We have encoder and decoder functions as follows:

Encoder: $f_n : X^n \rightarrow \{1, 2, \ldots, 2^{nR}\}$ \hspace{1cm} (17)

Decoder: $\phi_n : \{1, 2, \ldots, 2^{nR}\} \rightarrow X^n$ \hspace{1cm} (18)

and probability of error

$$P_{e}^{(n)} = Q^n(\{x_{1:n} : \phi_n(f_n(x_{1:n})) \neq x_{1:n}\})$$ \hspace{1cm} (19)

- Notation: $(M, n) = (2^{nR}, n)$ designates a series (in n) of such codes.
Definition 3.2 (Universal rate R block code)

A rate R block code for a source is universal if the functions f_n and ϕ_n do not depend on the source distribution Q and if

$$P_e^{(n)} \rightarrow 0 \text{ as } n \rightarrow \infty \text{ whenever } H(Q) < R \quad (20)$$
Definition 3.2 (Universal rate R block code)

A rate R block code for a source is universal if the functions f_n and ϕ_n do not depend on the source distribution Q and if

$$P_e^{(n)} \rightarrow 0 \text{ as } n \rightarrow \infty \text{ whenever } H(Q) < R$$ \hspace{1cm} (20)

- So we require the “ability to code” at rate R, which really means code without error, or the error goes to zero for larger block length.
Definition 3.2 (Universal rate R block code)

A rate R block code for a source is universal if the functions f_n and ϕ_n do not depend on the source distribution Q and if

$$P_e^{(n)} \to 0 \text{ as } n \to \infty \text{ whenever } H(Q) < R$$

(20)

- So we require the “ability to code” at rate R, which really means code without error, or the error goes to zero for larger block length.
- We next state and prove one of Shannon’s main theorems.
Universal Code

Definition 3.2 (Universal rate R block code)

A rate R block code for a source is universal if the functions f_n and ϕ_n do not depend on the source distribution Q and if

$$P_e^{(n)} \to 0 \text{ as } n \to \infty \text{ whenever } H(Q) < R \tag{20}$$

- So we require the “ability to code” at rate R, which really means code without error, or the error goes to zero for larger block length.
- We next state and prove one of Shannon’s main theorems.
- If $R > H(Q)$, then there exists a sequence (in n) of codes with the error of becoming vanishingly small.
Universal Code

Definition 3.2 (Universal rate R block code)

A rate R block code for a source is universal if the functions f_n and ϕ_n do not depend on the source distribution Q and if

$$P_e^{(n)} \to 0 \text{ as } n \to \infty \text{ whenever } H(Q) < R$$

(20)

- So we require the “ability to code” at rate R, which really means code without error, or the error goes to zero for larger block length.
- We next state and prove one of Shannon’s main theorems.
- If $R > H(Q)$, then there exists a sequence (in n) of codes with the error of becoming vanishingly small.
- Conversely, if $R < H(Q)$, then the error goes to 1.
Source Coding Theorem

Theorem 3.3 (Shannon’s Source Coding Theorem)

∃ a sequence $(2^{nR}, n)$ of universal source codes such that $P_e^{(n)} \to 0$ for all source distributions Q such that $H(Q) < R$.

Proof.

- Fix $R > H(Q)$ to be strictly greater than entropy.
Source Coding Theorem

Theorem 3.3 (Shannon’s Source Coding Theorem)

∃ a sequence $(2^{nR}, n)$ of universal source codes such that $P_e(n) \to 0$ for all source distributions Q such that $H(Q) < R$.

Proof.

- Fix $R > H(Q)$ to be strictly greater than entropy.
- Define a rate for n that is “fixed up” with a polynomial factor. I.e.,

$$R_n \triangleq R - |\mathcal{X}| \frac{\log(n + 1)}{n} < R$$

(21)
Source Coding Theorem

Theorem 3.3 (Shannon’s Source Coding Theorem)

∃ a sequence \((2^n R, n)\) of universal source codes such that \(P_e(n) \to 0\) for all source distributions \(Q\) such that \(H(Q) < R\).

Proof.

- Fix \(R > H(Q)\) to be strictly greater than entropy.
- Define a rate for \(n\) that is “fixed up” with a polynomial factor. I.e.,

\[
R_n \triangleq R - |X| \frac{\log(n + 1)}{n} < R
\]

(21)

- Define set of sequences that have entropy less than this rate.

\[
A_n \triangleq \{x_{1:n} \in X^n : H(P_{x_{1:n}}) \leq R_n\}
\]

(22)

\[
= \bigcup_{P \in \mathcal{P}_n} T(P) : H(P) \leq R_n
\]

(23)

...
Source Coding Theorem

... Proof of theorem 3.3 continued.

Then

\[
|A_n| = \sum_{P \in P_n} H(P) \leq R_n T(P) \leq \sum_{P \in P_n} H(P) \leq R_n 2^n H(P) \leq (n+1)|X| 2^n R_n (25)
\]

Since \(|A_n| \leq 2^n R_n\), we can index \(A_n\) with \(n R_n\) bits.

Let the encoder be:

\[
f_n(x_1:n) = \begin{cases}
\text{lexicographic index of } x_1:n \text{ in } A_n & \text{if } x_1:n \in A_n \text{ (i.e., if } H(P_{x_1:n}) \leq R_n) \\
0 & \text{else (i.e., if } H(P_{x_1:n}) > R_n)
\end{cases}
\]

(27)

...
Then $|A_n|$
Then $|A_n| = \sum_{P \in \mathcal{P}_n : H(P) \leq R_n} T(P)$

(26)
Source Coding Theorem

... Proof of theorem 3.3 continued.

Then

$$|A_n| = \sum_{P \in \mathcal{P}_n : H(P) \leq R_n} T(P) \leq \sum_{P \in \mathcal{P}_n : H(P) \leq R_n} 2^n H(P)$$

(24)

$$\leq (n+1)|X|2^n R_n$$

(25)

$$\leq 2^n (R_n + |X| \log(n+1))$$

(26)
Then \(|A_n| = \sum_{P \in \mathcal{P}_n: H(P) \leq R_n} T(P) \leq \sum_{P \in \mathcal{P}_n: H(P) \leq R_n} 2^{nH(P)}\) \hspace{1cm} (24)

\[\leq \sum_{P \in \mathcal{P}_n: H(P) \leq R_n} 2^{nR_n} \]

\[\leq 2^{nR_n} \]

\[(26) \]
Then \(|A_n| = \sum_{P \in \mathcal{P}_n: H(P) \leq R_n} T(P) \leq \sum_{P \in \mathcal{P}_n: H(P) \leq R_n} 2^{nH(P)} \) (24)

\[
\leq \sum_{P \in \mathcal{P}_n: H(P) \leq R_n} 2^n R_n \leq (n + 1)|X|2^n R_n
\] (25)

\[
= 2^n (R_n + |X| \log(n + 1))
\] (26)
Source Coding Theorem

... Proof of theorem 3.3 continued.

Then

\[
|A_n| = \sum_{P \in \mathcal{P}_n : H(P) \leq R_n} T(P) \leq \sum_{P \in \mathcal{P}_n : H(P) \leq R_n} 2^{nH(P)}
\]

(24)

\[
\leq \sum_{P \in \mathcal{P}_n : H(P) \leq R_n} 2^{nR_n} \leq (n + 1)|\mathcal{X}|2^{nR_n}
\]

(25)

\[
= 2^{n(R_n + |\mathcal{X}| \log(n+1)/n)}
\]

(26)
Source Coding Theorem

... Proof of theorem 3.3 continued.

Then

\[|A_n| = \sum_{P \in \mathcal{P}_n : H(P) \leq R_n} T(P) \leq \sum_{P \in \mathcal{P}_n : H(P) \leq R_n} 2^{nH(P)} \] \hspace{1cm} (24)

\[\leq \sum_{P \in \mathcal{P}_n : H(P) \leq R_n} 2^{nR_n} \leq (n + 1)|\mathcal{X}|2^{nR_n} \] \hspace{1cm} (25)

\[= 2^n(R_n + |\mathcal{X}| \frac{\log(n+1)}{n}) = 2^nR \] \hspace{1cm} (26)
Source Coding Theorem

... Proof of theorem 3.3 continued.

- Then

\[|A_n| = \sum_{P \in \mathcal{P}_n : H(P) \leq R_n} T(P) \leq \sum_{P \in \mathcal{P}_n : H(P) \leq R_n} 2^{nH(P)} \tag{24} \]

\[\leq \sum_{P \in \mathcal{P}_n : H(P) \leq R_n} 2^{nR_n} \leq (n + 1)|\mathcal{X}|2^{nR_n} \tag{25} \]

\[= 2^n(R_n + |\mathcal{X}|\log(n+1)) = 2^nR \tag{26} \]

- Since \(|A_n| \leq 2^nR \), we can index \(A_n \) with \(nR \) bits.
Source Coding Theorem

... Proof of theorem 3.3 continued.

- Then \(|A_n| = \sum_{P \in \mathcal{P}_n: H(P) \leq R_n} T(P) \leq \sum_{P \in \mathcal{P}_n: H(P) \leq R_n} 2^{nH(P)} \tag{24}\)

\[
\begin{align*}
&\leq \sum_{P \in \mathcal{P}_n: H(P) \leq R_n} 2^{nR_n} \\
&\leq (n + 1)|\mathcal{X}| 2^{nR_n} \tag{25}
\end{align*}
\]

\[
\begin{align*}
&= 2^{n(R_n + |\mathcal{X}| \frac{\log(n+1)}{n})} \\
&= 2^{nR} \tag{26}
\end{align*}
\]

- Since \(|A_n| \leq 2^{nR}\), we can index \(A_n\) with \(nR\) bits.

- Let the encoder be:

\[
f_n(x_{1:n}) = \begin{cases}
\text{lexicographic index} & \text{if } x_{1:n} \in A_n \\
0 & \text{(i.e., if } H(P_{x_{1:n}}) \leq R_n) \\
\end{cases} (\text{i.e., if } H(P_{x_{1:n}}) > R_n) \tag{27}
\]
... Proof of theorem 3.3 continued.

- Note: $f_n(\cdot)$ does not depend on the source distribution, only on the ordering and on R_n.

...
Proof of theorem 3.3 continued.

- Note: $f_n(\cdot)$ does **not** depend on the source distribution, only on the ordering and on R_n.
- Error occurs if $x_{1:n} \notin A_n$.

Source Coding Theorem
... Proof of theorem 3.3 continued.

- Note: \(f_n(\cdot) \) does not depend on the source distribution, only on the ordering and on \(R_n \).
- Error occurs if \(x_{1:n} \notin A_n \).
- We can represent this by placing types within the probability simplex, to indicate which types may be encoded. E.g., if \(|\mathcal{X}| = 3 \), then
Within the simplex, each point is potentially a type (the points with rational values with denominator n and numerator between 0 and n).

- $H(P) < R_n$
- $H(P) > R_n$
- $H(P) = R_n$

Set of sequences that are encoded correctly.
Proof of theorem 3.3 continued.

- Within the simplex, each point is potentially a type (the points with rational values with denominator n and numerator between 0 and n).

- Yellow region corresponds to types $P \in P_n$ whose sequences can be encoded correctly, as the rate constraint is satisfied.

\[
H(P) < R_n \\
H(P) > R_n \\
H(P) = R_n
\]
Proof of theorem 3.3 continued.

- Within the simplex, each point is potentially a type (the points with rational values with denominator n and numerator between 0 and n).

- Yellow region corresponds to types $P \in P_n$ whose sequences can be encoded correctly, as the rate constraint is satisfied.

- Light blue corresponds to types whose sequences will result in an error.
... Proof of theorem 3.3 continued.

- We upper bound $P_e^{(n)}$ and show it $\to 0$ as $n \to \infty$ when $R > H(Q)$.
... Proof of theorem 3.3 continued.

- We upper bound $P_e^{(n)}$ and show it $\to 0$ as $n \to \infty$ when $R > H(Q)$.
- An error occurs when the sequence is not in A^n, thus

\begin{equation}
\sum_{P_H > R} P_e^{(n)} = 1 - Q_n(T(P_H)) \leq (n+1)|X|_{\max} P_{H > R}^n Q_n(T(P_H)) \leq (n+1)|X|^2 - n \min P_{H > R}^n D(Q||P_H)
\end{equation}

(30)
Source Coding Theorem

... Proof of theorem 3.3 continued.

- We upper bound $P_e^{(n)}$ and show it $\to 0$ as $n \to \infty$ when $R > H(Q)$.
- An error occurs when the sequence is not in A, thus

$$P_e^{(n)}$$

\[(30) \]
Source Coding Theorem

... Proof of theorem 3.3 continued.

- We upper bound $P_e^{(n)}$ and show it $\rightarrow 0$ as $n \rightarrow \infty$ when $R > H(Q)$.
- An error occurs when the sequence is not in A, thus

$$P_e^{(n)} = 1 - Q^n(A_n)$$

(30)
Source Coding Theorem

... Proof of theorem 3.3 continued.

- We upper bound $P_e^{(n)}$ and show it → 0 as $n \to \infty$ when $R > H(Q)$.
- An error occurs when the sequence is not in A, thus

$$P_e^{(n)} = 1 - Q^n(Q_n) = \sum_{P: H(P) > R_n} Q^n(T(P)) \tag{28}$$

$$\leq (n + 1)|X| \max P: H(P) > R_n$$

$$R_n \uparrow R \Rightarrow R_n < R \text{ for all } n,$$

and

$$H(Q) < R_n.$$
Source Coding Theorem

... Proof of theorem 3.3 continued.

- We upper bound $P_e(n)$ and show it $\rightarrow 0$ as $n \rightarrow \infty$ when $R > H(Q)$.
- An error occurs when the sequence is not in A, thus

$$P_e(n) = 1 - Q^n(Q_n) = \sum_{P: H(P) > R_n} Q^n(T(P))$$

(28)

$$\leq (n + 1)|\mathcal{X}| \max_{P: H(P) > R_n} Q^n(T(P))$$

(29)

$$\leq (n + 1)|\mathcal{X}| \max_{P: H(P) > R_n} Q^n(T(P))$$

(30)

...
Source Coding Theorem

... Proof of theorem 3.3 continued.

- We upper bound $P_e^{(n)}$ and show it $\to 0$ as $n \to \infty$ when $R > H(Q)$.
- An error occurs when the sequence is not in A, thus

$$P_e^{(n)} = 1 - Q^n(Q_n) = \sum_{P: H(P) > R_n} Q^n(T(P)) \quad (28)$$

$$\leq (n + 1)^{|\mathcal{X}|} \max_{P: H(P) > R_n} Q^n(T(P)) \quad (29)$$

$$\leq (n + 1)^{|\mathcal{X}|} 2^{-n \left[\min_{P: H(P) > R_n} D(P||Q) \right]} \quad (30)$$
... Proof of theorem 3.3 continued.

- We upper bound $P_e^{(n)}$ and show it $\to 0$ as $n \to \infty$ when $R > H(Q)$.
- An error occurs when the sequence is not in A, thus

 $$P_e^{(n)} = 1 - Q^n(Q_n) = \sum_{P: H(P) > R_n} Q^n(T(P))$$ \hspace{2cm} (28)$$

 $$\leq (n + 1)^{|X|} \max_{P: H(P) > R_n} Q^n(T(P))$$ \hspace{2cm} (29)$$

 $$\leq (n + 1)^{|X|} 2^{-n \left[\min_{P: H(P) > R_n} D(P||Q) \right]}$$ \hspace{2cm} (30)$$

- So we have $R_n \uparrow R \Rightarrow R_n < R$ for all n, and $H(Q) < R$.

...
Source Coding Theorem

... Proof of theorem 3.3 continued.

- We upper bound $P_e(n)$ and show it $\to 0$ as $n \to \infty$ when $R > H(Q)$.
- An error occurs when the sequence is not in A, thus

$$P_e(n) = 1 - Q^n(Q_n) = \sum_{P: H(P) > R_n} Q^n(T(P))$$

(28)

$$\leq (n + 1)^{|X|} \max_{P: H(P) > R_n} Q^n(T(P))$$

(29)

$$\leq (n + 1)^{|X|} 2^{-n \left[\min_{P: H(P) > R_n} D(P\|Q) \right]}$$

(30)

- So we have $R_n \uparrow R \Rightarrow R_n < R$ for all n, and $H(Q) < R$.
- Thus, for some n_0, $\forall n > n_0$, we have $H(Q) < R_n$.
\[R_{n_0-2} \quad R_{n_0-1} \quad R_{n_0} \quad R_n \]

\[H(Q) \quad H(P) \quad R \]

- In Eq. (30) we chose \(P : H(P) > R_n \) for the current \(n \) (assuming there is one)
Source Coding Theorem

... Proof of theorem 3.3 continued.

\[R_{n_0-2} \quad R_{n_0-1} \quad R_{n_0} \quad R_n \]

\[H(Q) \quad H(P) \quad R \]

- In Eq. (30) we chose \(P : H(P) > R_n \) for the current \(n \) (assuming there is one)
- \(\Rightarrow H(P) > R_n > H(Q) \)
Source Coding Theorem

... Proof of theorem 3.3 continued.

\[R_{n_0-2} \quad R_{n_0-1} \quad R_{n_0} \quad R_n \]

- In Eq. (30) we chose \(P : H(P) > R_n \) for the current \(n \) (assuming there is one)
- \(\Rightarrow H(P) > R_n > H(Q) \)
- \(\Rightarrow P \neq Q \)
In Eq. (30) we chose $P : H(P) > R_n$ for the current n (assuming there is one)

$\Rightarrow H(P) > R_n > H(Q)$

$\Rightarrow P \neq Q$

$\Rightarrow D(P\|Q) > 0$ for the chosen P
Source Coding Theorem

... Proof of theorem 3.3 continued.

In Eq. (30) we chose $P : H(P) > R_n$ for the current n (assuming there is one)

$\Rightarrow H(P) > R_n > H(Q)$

$\Rightarrow P \neq Q$

$\Rightarrow D(P∥Q) > 0$ for the chosen P

Thus, we get

$$P_e^{(n)} \leq (n + 1)|\mathcal{X}| 2^{-n\left[\min_{P: H(P) > R_n} D(P∥Q)\right]}$$ (31)
... Proof of theorem 3.3 continued.

In Eq. (30) we chose $P : H(P) > R_n$ for the current n (assuming there is one)

$\Rightarrow H(P) > R_n > H(Q)$

$\Rightarrow P \neq Q$

$\Rightarrow D(P \| Q) > 0$ for the chosen P

Thus, we get

$$P_e^{(n)} \leq (n + 1)|\mathcal{X}| \cdot 2^{-n \left[\min_{P : H(P) > R_n} D(P \| Q) \right]}$$

(31)
In Eq. (30) we chose $P : H(P) > R_n$ for the current n (assuming there is one)

$\Rightarrow H(P) > R_n > H(Q)$

$\Rightarrow P \neq Q$

$\Rightarrow D(P \parallel Q) > 0$ for the chosen P

Thus, we get

$$P_e(n) \leq (n + 1)|\mathcal{X}| 2^{-n \left[\min_{P : H(P) > R_n} D(P \parallel Q) \right]}$$ \hspace{1cm} (31)
Source Coding Theorem

... Proof of theorem 3.3 continued.

In Eq. (30) we chose $P : H(P) > R_n$ for the current n (assuming there is one)

$\Rightarrow H(P) > R_n > H(Q)$

$\Rightarrow P \neq Q$

$\Rightarrow D(P\|Q) > 0$ for the chosen P

Thus, we get

$$P_e^{(n)} \leq (n + 1)|\mathcal{X}| \cdot 2^{-n \left[\min_{P : H(P) > R_n} D(P\|Q) \right]}$$

Which implies that $P_e^{(n)} \rightarrow 0$ as $n \rightarrow \infty$.
So far we’ve been talking about i.i.d. random variables, X_1, X_2, \ldots.
So far we’ve been talking about i.i.d. random variables, X_1, X_2, \ldots.

In such case, each random variable has the same entropy.
Stochastic Processes

- So far we’ve been talking about i.i.d. random variables, X_1, X_2, \ldots.
- In such case, each random variable has the same entropy.
- When the random variables are no longer i.i.d., how can we talk about the entropy of a process?
So far we’ve been talking about i.i.d. random variables, X_1, X_2, \ldots.

In such case, each random variable has the same entropy.

When the random variables are no longer i.i.d., how can we talk about the entropy of a process?

We start to address that here.
Definition 4.1 ((strict-sense) Stationary stochastic Process)

A sequence of r.v.s, X_1, X_2, \ldots, X_n governed by a probability distribution is strict sense stationary if it is the case that

$$p(X_{1:n} = x_{1:n}) = p(X_{1+\ell:n+\ell} = x_{1:n})$$ \hspace{1cm} (32)

for all ℓ, for all n, and for all $x_{1:n} \in \mathcal{X}^n$.
Stochastic Process

Definition 4.1 ((strict-sense) Stationary stochastic Process)

A sequence of r.v.s, X_1, X_2, \ldots, X_n governed by a probability distribution is strict sense stationary if it is the case that

$$p(X_{1:n} = x_{1:n}) = p(X_{1+\ell:n+\ell} = x_{1:n})$$

(32)

for all ℓ, for all n, and for all $x_{1:n} \in \mathcal{X}^n$.

Definition 4.2 (Markov process)

A stochastic process is first-order Markov if

$$p(X_{n+1} = x_{n+1} | X_{1:n} = x_{1:n}) = p(X_{n+1} = x_{n+1} | X_n = x_n)$$

(33)
Definition 4.1 ((strict-sense) Stationary stochastic Process)

A sequence of r.v.s, X_1, X_2, \ldots, X_n governed by a probability distribution is strict sense stationary if it is the case that

$$p(X_{1:n} = x_{1:n}) = p(X_{1+\ell:n+\ell} = x_{1:n})$$

(32)

for all ℓ, for all n, and for all $x_{1:n} \in X^n$.

Definition 4.2 (Markov process)

A stochastic process is first-order Markov if

$$p(X_{n+1} = x_{n+1} | X_{1:n} = x_{1:n}) = p(X_{n+1} = x_{n+1} | X_n = x_n)$$

(33)

In this latter case, it means that $p(x_{1:n}) = p(x_1)p(x_2|x_1) \ldots p(x_n|x_{n-1})$.
Definition 4.3 (homogeneous)

A Markov chain is time-invariant (or time-homogeneous, or just homogeneous) if \(p(x_{n+1}|x_n) \) does not depend on time. I.e., if

\[
p(X_{n+1} = b|X_n = a) = p(X_2 = b|X_1 = a) \quad \forall a, b, n
\] (34)
Definition 4.3 (homogeneous)

A Markov chain is time-invariant (or time-homogeneous, or just homogeneous) if \(p(x_{n+1} \mid x_n) \) does not depend on time. I.e., if

\[
p(X_{n+1} = b \mid X_n = a) = p(X_2 = b \mid X_1 = a) \quad \forall a, b, n
anumber{(34)}
\]

In such case, there is a fixed transition matrix \(P = [p_{ij}]_{ij} \) with \(p_{ij} = p(X_{n+1} = j \mid X_n = i) \) that can be drawn as a directed graph with arrows pointing between states that have non-zero transition.
Stochastic Process

Definition 4.4 (irreducible)

A Markov chain is **irreducible** if $p_{ij}(n) > 0$ for all i, j and for some n where $p_{ij}(n) = p(X_n = j|X_0 = i)$.

This is if it is possible to get from all states to all others with non-zero probability.
A Markov chain is irreducible if $p_{ij}(n) > 0$ for all i, j and for some n where $p_{ij}(n) = p(X_n = j | X_0 = i)$.

This is if it is possible to get from all states to all others with non-zero probability.

- Also recall note, matrix-vector for state probability at time $n + 1$ given that at time n.

$$p(x_{n+1}) = \sum_{x_n} p(x_n)p_{x_n,x_{n+1}}$$ \hspace{1cm} (35)
Definition 4.4 (irreducible)

A Markov chain is irreducible if \(p_{ij}(n) > 0 \) for all \(i, j \) and for some \(n \) where \(p_{ij}(n) = p(X_n = j | X_0 = i) \).

This is if it is possible to get from all states to all others with non-zero probability.

- Also recall note, matrix-vector for state probability at time \(n + 1 \) given that at time \(n \).

\[
p(x_{n+1}) = \sum_{x_n} p(x_n) p_{x_n, x_{n+1}}
\]

(first order) Markov chain is stationary if \(p(x_{n+1}) = p(x_n) \)
Definition 4.5

A Markov chain is periodic if \(d(i) > 1 \) with

\[
d(i) = \gcd\{n : p_{ii}(n) > 0\}
\]

Note that this is the gcd of the epochs at which return to the same state is possible.
Stochastic Process

Example:

\[P = \begin{pmatrix} 1 - \alpha & \alpha \\ \beta & 1 - \beta \end{pmatrix} \]
Example:

\[P = \begin{pmatrix} 1 - \alpha & \alpha \\ \beta & 1 - \beta \end{pmatrix} \]

If \(\mu = [p_1 p_2]^T \) is stationary distribution then we must have that \(\mu^T P = \mu^T \).
Example:

\[P = \begin{pmatrix} 1 - \alpha & \alpha \\ \beta & 1 - \beta \end{pmatrix} \]

If \(\mu = [p_1 p_2]^T \) is stationary distribution then we must have that \(\mu^T P = \mu^T \).

In fact, in this case \(\mu = \left[\frac{\beta}{\alpha+\beta}, \frac{\alpha}{\alpha+\beta} \right] \).
Stochastic Process

- Example:

\[P = \begin{pmatrix} 1 - \alpha & \alpha \\ \beta & 1 - \beta \end{pmatrix} \]

- If \(\mu = [p_1 \, p_2]^T \) is stationary distribution then we must have that \(\mu^T P = \mu^T \).

- In fact, in this case \(\mu = \left[\frac{\beta}{\alpha + \beta}, \frac{\alpha}{\alpha + \beta} \right] \).

- More facts about Markov chains and stochastic processes: Great source is the text: see “Probability and Random Processes”, Grimmett and Stirzaker.
Entropy rates

- Stochastic processes have entropy rates, which intuitively is the amount of new information, on average, that is provided by the stochastic process at each time step.
Entropy rates

- Stochastic processes have entropy rates, which intuitively is the amount of new information, on average, that is provided by the stochastic process at each time step.
- More formally
Entropy rates

- Stochastic processes have entropy rates, which intuitively is the amount of new information, on average, that is provided by the stochastic process at each time step.

- More formally

Definition 5.1

The **entropy rate of a stochastic process** \(\{X_i\}_i \) is defined as

\[
H(\mathcal{X}) \triangleq \lim_{n \to \infty} \frac{1}{n} H(X_1, X_2, \ldots, X_n)
\]

when it exists.
Entropy rates

- Stochastic processes have entropy rates, which intuitively is the amount of new information, on average, that is provided by the stochastic process at each time step.

- More formally

Definition 5.1

The entropy rate of a stochastic process \(\{X_i\}_i \) is defined as

\[
H(\mathcal{X}) \triangleq \lim_{n \to \infty} \frac{1}{n} H(X_1, X_2, \ldots, X_n)
\]

(37)

when it exists.

- So, as can be seen, it is the per symbol entropy given by the stochastic process when \(n \) gets large.
Examples

- i.i.d. set of r.v.s all $\sim p(x)$ then

$$H(X) = \lim_{n \to \infty} \frac{H(X_{x_1:n})}{n} = \frac{\sum_{i=1}^{n} H(X_i)}{n} = H(X_1) \quad (38)$$
Examples

- **I.i.d. set of r.v.s all \(\sim p(x) \) then**

\[
H(\mathcal{X}) = \lim_{n \to \infty} \frac{H(X_{x1:n})}{n} = \frac{\sum_{i=1}^{n} H(X_i)}{n} = H(X_1) \tag{38}
\]

- **Independent but not identically distributed:**

\[
\lim_{n \to \infty} \frac{\sum_{i=1}^{n} H(X_i)}{n} = ? \tag{39}
\]

in this case it might not exist.
Examples

- l.i.d. set of r.v.s all $\sim p(x)$ then

 $$H(X) = \lim_{n \to \infty} \frac{H(X_{x_1\ldots x_n})}{n} = \sum_{i=1}^{n} \frac{H(X_i)}{n} = H(X_1)$$
 \hspace{1cm} (38)

- Independent but not identically distributed:

 $$\lim_{n \to \infty} \frac{\sum_{i=1}^{n} H(X_i)}{n} = ?$$
 \hspace{1cm} (39)

 in this case it might not exist.

- Example when it doesn’t exist. Let $p_i = P(X_i = 1)$. Define it as

 $$p_i = \begin{cases}
 0.5 & \text{if } 2k < \log \log i \leq 2k + 1 \\
 0 & \text{if } 2k + 1 < \log \log i \leq 2k + 2
 \end{cases}$$
 \hspace{1cm} (40)
Definition 5.2

Again, assume a stochastic process and define the following rate:

\[H'(\mathcal{X}) \triangleq \lim_{n \to \infty} H(X_n | X_{n-1}, X_{n-2}, \ldots, X_1) \]

(41)

Theorem 5.3

For stationary stochastic process, \(H(X_n | X_{n-1}, X_{n-2}, \ldots, X_1) \) is decreasing in \(n \) and has a limit, lets call it \(H'(\mathcal{X}) \).

Proof.

\[H(X_{n+1} | X_1, \ldots, X_n) \leq H(X_{n+1} | X_2, \ldots, X_n) = H(X_1 | X_1, \ldots, X_n) \]

(42)

since we have a decreasing sequence with lower bound 0, it has a limit \(H'(\mathcal{X}) \).
Alternative Definition

Definition 5.2
Again, assume a stochastic process and define the following rate:

\[H'(\mathcal{X}) \triangleq \lim_{n \to \infty} H(X_n|X_{n-1}, X_{n-2}, \ldots, X_1) \] (41)

Theorem 5.3
For stationary stochastic process, \(H(X_n|X_{n-1}, X_{n-2}, \ldots, X_1) \) is decreasing in \(n \) and has a limit, lets call it \(H'(\mathcal{X}) \).
Alternative Definition

Definition 5.2

Again, assume a stochastic process and define the following rate:

\[H'(\mathcal{X}) \triangleq \lim_{n \to \infty} H(X_n|X_{n-1}, X_{n_2}, \ldots, X_n) \]

(41)

Theorem 5.3

For stationary stochastic process, \(H(X_n|X_{n-1}, X_{n_2}, \ldots, X_n) \) is decreasing in \(n \) and has a limit, lets call it \(H'(\mathcal{X}) \).

Proof.

\[H(X_{n+1}|X_1, \ldots, X_n) \leq H(X_{n+1}|X_2, \ldots, X_n) = H(X_{n+1}|X_1, \ldots, X_n) \]

(42)
Alternative Definition

Definition 5.2

Again, assume a stochastic process and define the following rate:

$$H'(\mathcal{X}) \triangleq \lim_{n \to \infty} H(X_n|X_{n-1}, X_{n_2}, \ldots, X_n)$$ \hspace{1cm} (41)

Theorem 5.3

For stationary stochastic process, $H(X_n|X_{n-1}, X_{n_2}, \ldots, X_n)$ is decreasing in n and has a limit, lets call it $H'(\mathcal{X})$.

Proof.

$$H(X_{n+1}|X_1, \ldots, X_n) \leq H(X_{n+1}|X_2, \ldots, X_n) = H(X_1|X_1, \ldots, X_n)$$ \hspace{1cm} (42)

since we have a decreasing sequence with lower bound 0, it has a limit H'.

Entropy rates or entropy rate

- Cesáro mean: if $a_n \to a$ and $b_n = \frac{1}{n} \sum_{i=1}^{n} a_n$ then $b_n \to a$
Entropy rates or entropy rate

- Cesáro mean: if $a_n \to a$ and $b_n = \frac{1}{n} \sum_{i=1}^{n} a_n$ then $b_n \to a$
- Key idea is that most of the terms in the sum are close to a, so the average is also close to a (formal proof in book).
Entropy rates or entropy rate

- Cesáro mean: if $a_n \to a$ and $b_n = \frac{1}{n} \sum_{i=1}^{n} a_n$ then $b_n \to a$
- Key idea is that most of the terms in the sum are close to a, so the average is also close to a (formal proof in book).
- This then gives:
Entropy rates or entropy rate

- Cesáro mean: if \(a_n \to a \) and \(b_n = \frac{1}{n} \sum_{i=1}^{n} a_n \) then \(b_n \to a \)
- Key idea is that most of the terms in the sum are close to \(a \), so the average is also close to \(a \) (formal proof in book).
- This then gives:

Theorem 5.4

We have that for stationary stochastic processes

\[
H'(X) = H(X)
\]
(43)
Entropy rates or entropy rate

- Cesáro mean: if $a_n \to a$ and $b_n = \frac{1}{n} \sum_{i=1}^{n} a_n$ then $b_n \to a$
- Key idea is that most of the terms in the sum are close to a, so the average is also close to a (formal proof in book).
- This then gives:

Theorem 5.4

We have that for stationary stochastic processes

$$H'(\mathcal{X}) = H(\mathcal{X})$$ \hspace{1cm} (43)
Entropy rates or entropy rate

- Cesáro mean: if \(a_n \to a \) and \(b_n = \frac{1}{n} \sum_{i=1}^{n} a_n \) then \(b_n \to a \)
- Key idea is that most of the terms in the sum are close to \(a \), so the average is also close to \(a \) (formal proof in book).
- This then gives:

Theorem 5.4

We have that for stationary stochastic processes

\[
H'(\mathcal{X}) = H(\mathcal{X})
\]

(43)

Proof.

\[
b_n = \frac{H(X_1, X_2, \ldots, X_n)}{n} = \frac{1}{n} \sum_{i=1}^{n} H(X_i | X_{i-1}, \ldots, X_1)
\]

(44)

and \(a_n \to H'(\mathcal{X}) \) so \(b_n \to H'(\mathcal{X}) \) but by definition \(b_n \to H(\mathcal{X}) \)
Entropy rates or entropy rate

- Cesàro mean: if \(a_n \to a \) and \(b_n = \frac{1}{n} \sum_{i=1}^{n} a_i \) then \(b_n \to a \)
- Key idea is that most of the terms in the sum are close to \(a \), so the average is also close to \(a \) (formal proof in book).
- This then gives:

Theorem 5.4

We have that for stationary stochastic processes

\[
H'(X) = H(X)
\]

(43)

Proof.

\[
b_n = \frac{H(X_1, X_2, \ldots, X_n)}{n} = \frac{1}{n} \sum_{i=1}^{n} H(X_i | X_{i-1}, \ldots, X_1) = a_n
\]

(44)

and \(a_n \to H'(X) \) so \(b_n \to H'(X) \) but by definition \(b_n \to H(X) \)
Note that for any stationary ergodic (loosely, time and ensemble averages are the same) process, we have

\[-\frac{1}{n} \log p(x_1, \ldots, x_n) \rightarrow H(X)\]

(45)
Entropy rate

- Note that for any stationary ergodic (loosely, time and ensemble averages are the same) process, we have

 \[
 -\frac{1}{n} \log p(x_1, \ldots, x_n) \rightarrow H(X) \quad (45)
 \]

- With this, we can prove AEP-like theorems and prove the source coding theorem for such processes, but we need more machinery to do so. This is done in section 16.8 Shannon-McMillan-Breiman Theorem (General AEP) (page 644) in our book.
Entropy rate and stationary Markov chain

When the process is a stationary Markov chain, entropy rate has a nice form.
Entropy rate and stationary Markov chain

- When the process is a stationary Markov chain, entropy rate has a nice form.

That is

\[
H(X) = H'(X) = \lim_{n \to \infty} H(X_n|X_{n-1}, \ldots, X_1) = \lim_{n \to \infty} H(X_n|X_{n-1}) = H(X_2|X_1)
\]

\[
= - \sum_{ij} p(x_2, x_1) \log p(x_2|x_1) = \sum_i \mu_i \left[- \sum_j p_{ij} \log p_{ij} \right]
\]

where again \(\mu \) is the stationary distribution and \(p_{ij} \) is the transition probability from \(i \) to \(j \).
Entropy rate and stationary Markov chain

- When the process is a stationary Markov chain, entropy rate has a nice form.

That is

\[H(X) = H'(X) = \lim_{n \to \infty} H(X_n|X_{n-1}, \ldots, X_1) \]

\[= \lim_{n \to \infty} H(X_n|X_{n-1}) = H(X_2|X_1) \]

\[= - \sum_{ij} p(x_2, x_1) \log p(x_2|x_1) = \sum_i \mu_i \left[- \sum_j p_{ij} \log p_{ij} \right] \]

(48)

where again \(\mu \) is the stationary distribution and \(p_{ij} \) is the transition probability from \(i \) to \(j \).

- Ex: previous figure

\[H(X) = H(X_2|X_1) = \frac{\beta}{\alpha+\beta} H(\alpha) + \frac{\alpha}{\alpha+\beta} H(\beta). \]
Ex: random walk on weighted undirected graph

- Assume irreducible and aperiodic so unique stationary distribution.
Ex: random walk on weighted undirected graph

- Assume irreducible and aperiodic so unique stationary distribution.
- Graph $G = (V, E)$ with m nodes labeled $\{1, 2, \ldots, m\}$ and edges with weight $w_{ij} \geq 0$.

\begin{align*}
\text{Random walk: start at a node, say } i, \text{ and choose next node with probability proportional to edge weight, i.e., } p_{ij} &= \frac{w_{ij}}{\sum_j w_{ij}}.
\end{align*}
Ex: random walk on weighted undirected graph

- Assume irreducible and aperiodic so unique stationary distribution.
- Graph $G = (V, E)$ with m nodes labeled $\{1, 2, \ldots, m\}$ and edges with weight $w_{ij} \geq 0$.
- Random walk: start at a node, say i, and choose next node with probability proportional to edge weight, i.e., p_{ij} as

$$p_{ij} = \frac{w_{ij}}{\sum_j w_{ij}} = \frac{w_{ij}}{w_i}$$

(49)

where $w_i \triangleq \sum_j w_{ij}$.
Ex: random walk on weighted undirected graph

- Assume irreducible and aperiodic so unique stationary distribution.
- Graph $G = (V, E)$ with m nodes labeled $\{1, 2, \ldots, m\}$ and edges with weight $w_{ij} \geq 0$.
- Random walk: start at a node, say i, and choose next node with probability proportional to edge weight, i.e., p_{ij} as
 \[
 p_{ij} = \frac{w_{ij}}{\sum_j w_{ij}} = \frac{w_{ij}}{w_i}
 \]
 (49)

 where $w_i \triangleq \sum_j w_{ij}$.
- Guess that stationary distribution has probability proportional to w_i.
Ex: random walk on weighted undirected graph

- Assume irreducible and aperiodic so unique stationary distribution.
- Graph $\mathcal{G} = (\mathcal{V}, \mathcal{E})$ with m nodes labeled $\{1, 2, \ldots, m\}$ and edges with weight $w_{ij} \geq 0$.
- Random walk: start at a node, say i, and choose next node with probability proportional to edge weight, i.e., p_{ij} as

$$p_{ij} = \frac{w_{ij}}{\sum_j w_{ij}} = \frac{w_{ij}}{w_i} \quad (49)$$

where $w_i \triangleq \sum_j w_{ij}$.

- Guess that stationary distribution has probability proportional to w_i.
- If $w = \sum_{i,j:j>i} w_{ij}$ then $\sum_i w_i = 2w$, so guess as stationary distribution μ with $\mu_i = \frac{w_i}{2w}$.

Prof. Jeff Bilmes
Ex: random walk on weighted undirected graph

• This is stationary since

\[\forall j, \mu'_j = \sum_i \mu_i P_{ij} = \sum_i \frac{w_i w_{ij}}{2w} \quad (50) \]

\[= \sum_i \frac{1}{2w} w_{ij} = \frac{w_j}{2w} = \mu_j \quad (51) \]
Ex: random walk on weighted undirected graph

- This is stationary since

\[
\forall j, \mu'_j = \sum_i \mu_i P_{ij} = \sum_i \frac{w_i}{2w} \frac{w_{ij}}{w_i} = \sum_i \frac{1}{2w} w_{ij} = \frac{w_j}{2w} = \mu_j
\]

(50)

(51)

- Can swap edges elsewhere (i.e., edges between nodes not including \(i\)), does not change the stationary condition which is local.
Ex: random walk on weighted undirected graph

This is stationary since

$$\forall j, \mu'_j = \sum_i \mu_i P_{ij} = \sum_i \frac{w_i w_{ij}}{2w} = \mu_j$$ \hspace{1cm} (50)

$$= \sum_i \frac{1}{2w} w_{ij} = \frac{w_j}{2w} = \mu_j$$ \hspace{1cm} (51)

Can swap edges elsewhere (i.e., edges between nodes not including \(i\)), does not change the stationary condition which is local.

Note chain is aperiodic since \(w_{ii} = 0\). This is because

$$2w = \sum_i w_i = \sum_{ij} w_{ij} = \sum_{ij:i=j} w_{ij} + \sum_{ij:j>i} w_{ij} + \sum_{ij:j<i} w_{ij}$$ \hspace{1cm} (52)

$$= \sum_{ij:i=j} w_{ij} + w + \sum_{ij:j<i} w_{ij}$$ \hspace{1cm} (53)

and $$2w - w = \sum_{ij:i=j} w_{ij} + \sum_{ij:j<i} w_{ij} \Rightarrow \sum_{ij:i=j} w_{ij} = 0 \Rightarrow w_{ii} = 0.$$
What is entropy of this random walk

\[H(X) = H(X_2 | X_1) = - \sum_{i} \mu_i \sum_{j} p_{ij} \log p_{ij} \]

(54)

\[= - \sum_{i} \frac{w_i}{2w} \sum_{j} \frac{w_{ij}}{w_i} \log \frac{w_{ij}}{w_i} = - \sum_{ij} \frac{w_{ij}}{2w} \log \frac{w_{ij}}{w_i} \]

(55)

\[= - \sum_{ij} \frac{w_{ij}}{2w} \log \left[\frac{w_{ij}}{2w} \frac{2w}{w_i} \right] \]

(56)

\[= - \sum_{ij} \frac{w_{ij}}{2w} \log \frac{w_{ij}}{2w} + \sum_{ij} \frac{w_{ij}}{2w} \log \frac{w_i}{2w} \]

(57)

\[= H(\ldots, \frac{w_{ij}}{2w}, \ldots) - H(\ldots, \frac{w_i}{2w}, \ldots) \]

(58)

\[= H(\text{overall edge uncertainty}) \]

(59)

\[- H(\text{overall node uncertainty, stat. cond}) \]

(60)
An HMM is a distribution \(p(X_{1:n}, Y_{1:n}) \) over \(2n \) random variables that factors in a particular way.
An HMM is a distribution $p(X_{1:n}, Y_{1:n})$ over $2n$ random variables that factors in a particular way.

Easiest way to depict all of the factorization properties is to use a graphical model, as in the below, where $n = 5$:
Hidden Markov models (HMMs)

- An HMM is a distribution $p(X_{1:n}, Y_{1:n})$ over $2n$ random variables that factors in a particular way.
- Easiest way to depict all of the factorization properties is to use a graphical model, as in the below, where $n = 5$:

Let X_1, X_2, \ldots, X_n be a stationary Markov chain.
Hidden Markov models (HMMs)

- An HMM is a distribution $p(X_{1:n}, Y_{1:n})$ over $2n$ random variables that factors in a particular way.
- Easiest way to depict all of the factorization properties is to use a graphical model, as in the below, where $n = 5$:

Let X_1, X_2, \ldots, X_n be a stationary Markov chain.

Let $Y_{1:n}$ be a random function of this Markov chain. I.e.,

\[
Y_i = \begin{cases}
\phi_1(X_i) & \text{with probability } p_1 \\
\phi_2(X_i) & \text{with probability } p_2 \\
& \vdots \\
\phi_m(X_i) & \text{with probability } p_m
\end{cases} = \phi_N(X_i) \quad (61)
\]

where $N \in \{1, 2, \ldots, m\}$ itself is a random variable.
Note that the stochastic process Y_1, Y_2, \ldots does not form a Markov chain in general. Why?
HMMs

Note that the stochastic process Y_1, Y_2, \ldots does not form a Markov chain in general. Why? Because it does not satisfy the first order Markov assumption, nor any order Markov assumption in general.
HMMs

- Note that the stochastic process $Y_1, Y_2 \ldots$ does not form a Markov chain in general. Why? because it does not satisfy the first order Markov assumption, nor any order Markov assumption in general.

- If $\{X_i\}_i$ is stationary, then is $\{Y_i\}_i$ a stationary stochastic process?
Note that the stochastic process Y_1, Y_2, \ldots does not form a Markov chain in general. Why? because it does not satisfy the first order Markov assumption, nor any order Markov assumption in general.

If $\{X_i\}_i$ is stationary, then is $\{Y_i\}_i$ a stationary stochastic process? Yes. Possible HW problem, so no more given here.
HMMs

- Note that the stochastic process Y_1, Y_2, \ldots does not form a Markov chain in general. Why? because it does not satisfy the first order Markov assumption, nor any order Markov assumption in general.

- If $\{X_i\}_i$ is stationary, then is $\{Y_i\}_i$ a stationary stochastic process? Yes. Possible HW problem, so no more given here.

- We can compute the entropy rate of $\{Y_i\}_i$, i.e.,

 $H(\mathcal{Y}) = H \lim_{n \to \infty} (Y_n | Y_{n-1}, \ldots, Y_1)$

 but it is ugly, so instead we compute upper and lower bounds.
Note that the stochastic process Y_1, Y_2, \ldots does not form a Markov chain in general. Why? because it does not satisfy the first order Markov assumption, nor any order Markov assumption in general.

If $\{X_i\}_i$ is stationary, then is $\{Y_i\}_i$ a stationary stochastic process? Yes. Possible HW problem, so no more given here.

We can compute the entropy rate of $\{Y_i\}_i$, i.e.,

$$H(Y) = H \lim_{n \to \infty} (Y_n|Y_{n-1}, \ldots, Y_1)$$

but it is ugly, so instead we compute upper and lower bounds.

Upper bound(s):

$$H(Y_n|Y_{n-1}, \ldots, Y_1) = H(Y_{n+1}|Y_n, \ldots, Y_2) \geq H(Y_{n+1}|Y_1, \ldots, Y_n) \quad (62)$$

$$\geq H(Y_{n+2}|Y_{n+1}, \ldots, Y_1) \geq \cdots \geq H(Y) \quad (63)$$
A lower bound is given by $H(Y_n|Y_{n-1}, \ldots, Y_2, X_1) \leq H(Y)$ because

\begin{align*}
H(Y_n|Y_{n-1}, \ldots, Y_2, X_1) &= H(Y_n|Y_{n-1}, \ldots, Y_2, Y_1, X_1) \\ &= H(Y_n|Y_{n-1}, \ldots, Y_1, X_1, X_0, X_{-1}, \ldots, X_{-k}) \\ &= H(Y_n|Y_{n-1}, \ldots, Y_1, X_1, X_0, X_{-1}, \ldots, X_{-k}, Y_0, \ldots, Y_{-k}) \\ &\leq H(Y_n|Y_{n-1}, \ldots, Y_1, Y_0, \ldots, Y_{-k}) \\ &= H(Y_{n+k+1}|Y_{n+k}, \ldots, Y_1)
\end{align*}
A lower bound is given by $H(Y_n|Y_{n-1}, \ldots, Y_2, X_1) \leq H(Y)$ because

$$H(Y_n|Y_{n-1}, \ldots, Y_2, X_1) = H(Y_n|Y_{n-1}, \ldots, Y_2, Y_1, X_1)$$ \hspace{1cm} (64)

$$= H(Y_n|Y_{n-1}, \ldots, Y_1, X_1, X_0, X_{-1}, \ldots, X_{-k})$$ \hspace{1cm} (65)

$$= H(Y_n|Y_{n-1}, \ldots, Y_1, X_1, X_0, X_{-1}, \ldots, X_{-k}, Y_0, \ldots, Y_{-k})$$

$$\leq H(Y_n|Y_{n-1}, \ldots, Y_1, Y_0, \ldots, Y_{-k})$$ \hspace{1cm} (66)

$$= H(Y_{n+k+1}|Y_{n+k}, \ldots, Y_1)$$ \hspace{1cm} (67)

So summarizing the bounds on the HMM information rates, we have

$$H(Y_n|Y_{n-1}, \ldots, Y_1, X) \leq H(Y) \leq H(Y_n|Y_{n-1}, \ldots, Y_1)$$ \hspace{1cm} (68)
Lemma 5.5 (ever shrinking sandwich)

\[H(Y_n|Y_{n-1}, \ldots, Y_1) - H(Y_n|Y_{n-1}, \ldots, Y_1, X) \rightarrow 0 \] (69)

Proof.

\[
\begin{align*}
H(Y_n|Y_{n-1}, \ldots, Y_1) - H(Y_n|Y_{n-1}, \ldots, Y_1, X) &= I(Y_n; X_1|Y_{n-1}, \ldots, Y_1) \\
&\leq H(X) = H(X_1)
\end{align*}
\] (70)
Lemma 5.5 (ever shrinking sandwich)

\[H(Y_n|Y_{n-1}, \ldots, Y_1) - H(Y_n|Y_{n-1}, \ldots, Y_1, X) \to 0 \]

(69)

Proof.

\[H(Y_n|Y_{n-1}, \ldots, Y_1) - H(Y_n|Y_{n-1}, \ldots, Y_1, X) = I(Y_n; X_1|Y_{n-1}, \ldots, Y_1) \]

\[\leq H(X) = H(X_1) \]

(70)

Now,

\[\lim_{n \to \infty} I(X; Y_1, \ldots, Y_n) = \lim_{n \to \infty} \sum_{i=1}^{n} I(X_1; Y_i|Y_{1:i-1}) \]

(71)

\[= \sum_{i=1}^{\infty} I(X_1; Y_i|Y_{1:i-1}) \leq H(X) < \infty \]

(72)
Lemma 5.5 (ever shrinking sandwich)

\[H(Y_n|Y_{n-1}, \ldots, Y_1) - H(Y_n|Y_{n-1}, \ldots, Y_1, X) \to 0 \]

(69)

Proof.

\[H(Y_n|Y_{n-1}, \ldots, Y_1) - H(Y_n|Y_{n-1}, \ldots, Y_1, X) = I(Y_n; X_1|Y_{n-1}, \ldots, Y_1) \leq H(X) = H(X_1) \]

(70)

Now,

\[\lim_{n \to \infty} I(X; Y_1, \ldots, Y_n) = \lim_{n \to \infty} \sum_{i=1}^{n} I(X_1; Y_i|Y_1:i-1) \]

(71)

\[= \sum_{i=1}^{\infty} I(X_1; Y_i|Y_1:i-1) \leq H(X) < \infty \]

(72)

So an infinite sum is constant, must mean the terms \(\to 0 \) as \(n \to \infty \). Thus, each of the terms \(I(X_1; Y_i|Y_1:i-1) \to 0 \) as \(n \to \infty \). \(\square \)
Summarizing, we have

$$\lim_{n \to \infty} H(Y_n|Y_{n-1}, \ldots, Y_1, X) = H(Y) = \lim_{n \to \infty} H(Y_n|Y_{n-1}, \ldots, Y_1)$$

(73)