Cumulative Outstanding Reading

- Read Ch. 10 in our book (Cover & Thomas, “Information Theory”).
- Read Ch. 17 in our book (Cover & Thomas, “Information Theory”) on matrix inequalities.
- Read Ch. 9 in our book (Cover & Thomas, “Information Theory”)
- Read Ch. 5 in Boyd and Vandenberghe’s Convex Optimization book
- Read all readings assigned in EE514a, Fall 2013. (see later lectures on our previous web page [http://j.ee.washington.edu/~bilmes/classes/ee514a_fall_2013/]).

Additional Reading on Rate-Distortion Theory

- “Information Geometry and Alternating Minimization Procedures”, Csiszár & Tusnády, 1983
Homework

- Homework 1 posted on canvas, due Monday, 1/27/14 at 11:45pm. Only four problems, but these are good problems (and first three are on Gaussian channels so you can start today).

Announcements

- Office hours on Mondays, 3:30-4:30.
- As always, email me if you want to skype/google hangout rather than come to office hours, also at different times.
Combined Bound for Feedback

Corollary 23.2.7

\[C_{n,FB} \leq \min \{2C_n, C_n + 1/2\} \quad (23.32) \]

So unfortunately, feedback in this model is not as useful as we might think it would be.

Coding/Compression and Transmission

- We know that the source compresses down to the entropy \(H \), but no further.

- We also know that the signal may be sent through the channel at a rate no more than \(C \).
Coding/Compression with distortion

- What if we want to compress \(R < H \) or transmit \(R > C \)? ⇒ Error.
- Similarly, what if we allow for errors, but rather than measure error or no error, measure average distortion.
- But are all errors created equal? Are all errors as bad as others?
- We can measure errors with a distortion function, and we have generalization of the previously stated results.
- Rate-distortion curves with achievable region

Vector Quantization

- We have symbols \(X \in \mathcal{X} \) which could be a continuous or a (say big) discrete domain.
- We quantize this region to \(\hat{\mathcal{X}} \) where \(\hat{\mathcal{X}} \) is discrete and not too big (if \(\mathcal{X} \) is discrete, then \(|\hat{\mathcal{X}}| \ll |\mathcal{X}| \)).
- In above, \(\hat{\mathcal{X}} = \{\hat{x}_1, \hat{x}_2, \ldots, \hat{x}_7\}, |\hat{\mathcal{X}}| = 7 = M \)
- There are a set of regions \(\mathcal{R}_i, i = 1, \ldots, M \), disjoint so that \(\mathcal{R}_i \cap \mathcal{R}_j = \emptyset \) for \(i \neq j \), and with \(\hat{x}_i \in \mathcal{R}_i \) for all \(i \).
Vector Quantization: What determines quality?

- The “quality” of the codebook depends on:
 1. The specific values $\{\hat{x}_i\}_{i=1}^M$, the representatives.
 2. How big M is, or rather R, with $M = 2^nR$.
 3. How often each of the values within $\{\hat{x}_i\}_{i=1}^M$ are used, or more accurately, a probability distribution $p(x)$ over X.
 4. A measure of how bad it is to represent $x \in X$ by $g(f(x))$, or a distortion $d(x, g(f(x)))$.

- Expected distortion $D = E_{p(x)} d(X, g(f(X)))$.

Rate distortion: set up

- A source produces $x_1, x_2, \ldots \sim p(x)$ based on source distribution $p(x)$ with $x_i \in X$ for all i.
- An encoder $f_n : X^n \rightarrow \{1, 2, \ldots, 2^nR\}$ takes a sequence of source symbols $x_{1:n}$ and maps them to an integer:
- A decoder $g_n : \{1, 2, \ldots, 2^nR\} \rightarrow \hat{X}^n$ takes an integer and maps to quantized vector (i.e., a codeword).
- A distortion function $d : X \times \hat{X} \rightarrow \mathbb{R}^+$ measures how bad the mapping is. I.e., $d(x, \hat{x})$ measures the “cost” of representing $x \in X$ by $\hat{x} \in \hat{X}$.
- Distortion is bounded (sometimes needed) if $\exists d_{\text{max}}$ such that $d_{\text{max}} \triangleq \max_{x, \hat{x}} d(x, \hat{x}) < \infty$.
- Ex: Hamming (probability of error) distortion.

$$d(x, \hat{x}) = \begin{cases} 0 & \text{if } x = \hat{x} \\ 1 & \text{otherwise} \end{cases} \quad (23.35)$$

Then $Ed(X, \hat{X}) = \Pr(X \neq \hat{X})$.
A \((2^nR, n)\) rate distortion code consists of an encoding function
\[f_n : X^n \rightarrow \{1, 2, \ldots, 2^nR \} \] (23.36)
and a decoding function
\[g_n : \{1, 2, \ldots, 2^nR\} \rightarrow \hat{X}^n \] (23.37)

(Note, \(H(\hat{X}^n) \leq nR\) since only \(2^nR\) different codewords.)
The distortion of this code is
\[D = Ed(X_{1:n}, g_n(f_n(X_{1:n}))) = \sum_{x_{1:n} \in X^n} p(x_{1:n})d(x_{1:n}, g_n(f_n(x_{1:n}))) \] (23.38)

Achievability and rate-distortion pairs

Definition 23.2.7
A rate-distortion pair \((R, D)\) is said to be achievable if \(\exists\) a sequence of \((2^nR, n)\) codes \((f_n, g_n)\) with
\[\lim_{n \rightarrow \infty} Ed(X_{1:n}, g_n(f_n(X_{1:n}))) \leq D \] (23.37)

- \(D\) is the max allowable distortion for code at this rate \(R\).
- We can make errors, but not too many (bounded average distortion).
- The type of errors we can make is entirely dependent on the distortion function.
- Def: A rate distortion region for a source is the closure of achievable rate distortion pairs \((R, D)\)
- Def: A rate distortion function \(R(D)\) is the infimum of rates \(R\) such that \((R, D)\) is in rate distortion region. I.e.,
\[R(D) = \inf \{ R : (R, D) \text{ is achievable} \} \] (23.38)
Def: A distortion rate function $D(R)$ is the infimum of distortions D such that (R, D) is in rate distortion region. I.e.,

$$D(R) = \inf \{ D : (R, D) \text{ is achievable} \} \quad (23.37)$$

The next definition is very important

Definition 23.2.7

The “information” rate distortion function $R(I)(D)$ for source X and distortion $d(x, \hat{x})$ is defined as

$$R^{(I)}(D) = \min_{p(\hat{x}|x) : \sum_x x \hat{x} p(x)p(\hat{x}|x)d(x, \hat{x}) \leq D} I(X; \hat{X}) \quad (23.38)$$

Lets now spend a bit of time getting some intuition on this function.

Intuition: Information Rate Distortion Function

$$R^{(I)}(D) = \min_{p(\hat{x}|x) : \sum_x x \hat{x} p(x)p(\hat{x}|x)d(x, \hat{x}) \leq D} I(X; \hat{X}) \quad (23.38)$$

- Related to lossless entropy compression.
- Suppose $D = Ed(X, \hat{X}) = 0$ (no distortion) and recall $d(x, \hat{x}) \geq 0$ by definition.
- Thus, we must at least have that $\forall x, \hat{x} : p(x, \hat{x}) > 0$, $d(x, \hat{x}) = 0$.
- Consider distortions of the form: $d(x, \hat{x}) = 0 \Rightarrow \{x = \hat{x}\}$. For example, $d(x, \hat{x}) = 1 \{x \neq \hat{x}\}$, or alternatively $d(x, \hat{x}) = (x - \hat{x})^2$.
- Thus, $\forall x, \hat{x}$, if $p(x, \hat{x}) > 0$ then $x = \hat{x}$. Or, the random variables are such that $X = \hat{X}$
- Hence,

$$I(X; \hat{X}) = I(X; X) = H(X) \quad (23.39)$$

- And if $p(x)$ is uniform, then

$$R^{(I)}(D) = H(X) \quad (23.40)$$
Theorem 23.3.1

The rate-distortion function $R(D)$ for Bernoulli(p) with $d(x, \hat{x}) = 1_{\{x \neq \hat{x}\}}$ (Hamming distortion) has the following form:

$$R(D) = \begin{cases} H(p) - H(D) & \text{if } 0 \leq D \leq \min \{p, 1 - p\} \\ 0 & \text{if } D > \min \{p, 1 - p\} \end{cases}$$

(23.1)

- When $D = 0$, minimum rate is the entropy, and can’t compress below the entropy with zero distortion.
- As $D \uparrow$, we can “compress” more, below the entropy, but we suffer some distortion, and the cyan curve (as we will soon see) gives the limits of achievability.
- If we have $D > p$, then random noise will have that distortion, so we can just decode noise and achieve a rate of zero.
Distortion vs. Error

- Is it, in general, always the case that $R(D) = H$ at $D = 0$?
 - No. If $D = 0$ does not require $P_e = 0$, then we can compress below the entropy with zero distortion but non-zero error.

Why is $R(0) = H(p)$ in $X \sim \text{Bernoulli}(p)$ r.v. case above?
- Since Hamming distortion is such that $\{D = 0\} \iff P_e = 0$.
- Key point (again): distortion not necessarily the same as error.
- Achievable rate distortion region is “up-right”-closed. Why?
- We don’t know if it is always convex yet. Give example of non-convex up-right closed region. A: staircase down to the right.

Proof of Theorem 23.3.1.
- $X \sim B(p)$ and assume, $D < p$ (for now) and w.l.o.g., that $0 \leq D < p \leq 1/2$ (so $\min\{p, 1-p\} = p$).
- \oplus is the xor operator, so $\{x \oplus \hat{x} = 1\} \equiv \{x \neq \hat{x}\}$.
- Approach (like before), find a lower bound on $I(X; \hat{X})$ which does not depend on $p(\hat{x}|x)$, but then find a procedure that “achieves” this lower bound. we get:

$$I(X; \hat{X}) = H(X) - H(X|\hat{X}) \tag{23.2}$$
$$= H(X) - H(X \oplus \hat{X}|\hat{X}) \tag{23.3}$$
$$\geq H(p) - H(X \oplus \hat{X}) \tag{23.4}$$
$$= H(p) - H(\text{Pr}\{X \neq \hat{X}\}) \tag{23.5}$$
$$\geq H(p) - H(D) \tag{23.6}$$
rate-distortion for Bernoulli r.v.

Proof of Theorem 23.3.1.

- This last step follows since 1) \(D < p \leq 1/2 \); 2) that \(H(D) \) is a non-negative monotone non-decreasing function of \(D \) from \(0 \leq D \leq 1/2 \); and 3) by the constraint (assumed to be true):

\[
 Ed(X, \hat{X}) = \Pr(\{X \neq \bar{X}\}) \leq D \tag{23.7}
\]

Hence, we have that \(H(\Pr(\{X \neq \bar{X}\})) \leq H(D) \).

- Now we need to show a distribution \(p(x, \hat{x}) \) that 1) achieves this lower bound and that 2) has tight rate \(R(D) \) with this lower bound \(H(p) - H(D) \).

- For case \(D = 0 \), Hamming requires \(P_e = 0 \) and \(R(0) = H(p) \).

- For case \(0 \leq D < p \): we just fix \(\Pr(X = 1) = p \) (so \(H(X) = H(p) \)) and then choose a \(p(\hat{x}|x) \) so that joint distribution \(p(\hat{x}, x) \) achieves rate \(R(D) = H(p) - H(D) \).

\[
 D \leq p < 1/2 \text{ rate-distortion for Bernoulli r.v.}
\]

Proof of Theorem 23.3.1.

- Let \(p(x|\hat{x}) \) be like a BSC with crossover probability \(D \), i.e.,

\[
p(x|\hat{x}) = \begin{cases}
1 - D & \text{if } x = \hat{x} \\
D & \text{if } x \neq \hat{x}
\end{cases} \tag{23.8}
\]

- Then for any \(\Pr(\hat{X}) \), we have \(Ed(X, \hat{X}) = \Pr(X \neq \hat{X}) = D \), and

\[
p = \Pr(X = 1) = \Pr(X = 1|\hat{X} = 0)\Pr(\hat{X} = 0) + \Pr(X = 1|\hat{X} = 1)\Pr(\hat{X} = 1)
= D(1 - \Pr(\hat{X} = 1)) + (1 - D)\Pr(\hat{X} = 1) \tag{23.10}
\]

- Solving for \(\Pr(\hat{X} = 1) \) we get

\[
 \Pr(\hat{X} = 1) = \frac{p - D}{1 - 2D} \leq p \quad \text{if } 0 \leq D < p \leq 1/2 \tag{23.11}
\]
Aside: rate-distortion for Bernoulli r.v.

- Assume $D < p \leq 1/2$ and that $\Pr(\hat{X} = 1) = (p - D)/(1 - 2D)$.
- Then $p \geq (p - D)/(1 - 2D)$ since

$$
\frac{p - D}{1 - 2D} - p = \frac{D(2p - 1)}{1 - 2D} \leq 0 \quad (23.12)
$$

Proof of Theorem 23.3.1.

- So we have right distortion $Ed(X, \hat{X}) = D$, we just need to show that $I(X; \hat{X}) = H(p) - H(D)$.
- Starting with the lower bound, we get:

$$
H(p) - H(D) \leq I(X; \hat{X}) = H(X) - H(X|\hat{X}) \quad (23.13)
$$
$$
= H(p) - H(X|\hat{X}) \quad (23.14)
$$
$$
= H(\hat{X}) - H(\hat{X}|X) \quad (23.15)
$$
$$
= H(\hat{X}) - H(D) \quad (23.16)
$$
$$
\leq H(p) - H(D) \quad (23.17)
$$

- And thus $I(X; \hat{X}) = H(p) - H(D)$.

...
rate-distortion for Bernoulli r.v.

Proof of Theorem 23.3.1.

- If \(D \geq p \) then we must show that we can achieve this distortion with a rate of \(R = 0 \).
- To do this, hard-code \(\hat{X} = 0 \) (i.e., \(P(\hat{X} = 0) = 1 \)) which can be done with a rate of \(R = 0 \).
- Then \(Ed(X, \hat{X}) = Pr(X \neq \hat{X}) = Pr(\text{error}) \) and with \(\hat{X} = 0 \), we see that

\[
Pr(\text{error}) = Pr(X = 0)Pr(\hat{X} = 1|X = 0) + Pr(X = 1)Pr(\hat{X} = 0|X = 1)
\]

\[
= Pr(X = 0) \times 0 + Pr(X = 1) \times 1
\]

\[
= p
\]

Key Theorem

Theorem 23.3.2

Let \(R(D) \) be the rate-distortion function and let \(R^{(I)}(D) \) be the information rate distortion function. Then

\[
R(D) = R^{(I)}(D)
\]

- This means that the minimum coding rate for achieving distortion \(D \) is, perhaps now unsurprisingly, \(R^{(I)}(D) \).
- Two things to prove: (1) that if \((R, D) \) is achievable, than \(R > R^{(I)}(D) \), and (2) if \(R > R^{(I)}(D) \), then there exists a sequence of codes that can achieve rate-distortion pair \((R, D) \).
- Like in channel capacity and entropy compression case, what happens at \(R = R^{(I)}(D) \) depends on the very specific case that one is analyzing.
- For now, let’s look at Gaussian sources.
Gaussian Channels

Theorem 23.4.1

For Gaussian sources $X \sim \mathcal{N}(0,\sigma^2)$ with a squared-error distortion, we have a rate distortion function of the form:

$$R^{(I)}(D) = \begin{cases} \frac{1}{2} \log \frac{\sigma^2}{D} & \text{if } 0 \leq D \leq \sigma^2 \\ 0 & \text{otherwise.} \end{cases} \quad (23.23)$$

- Thus, $R^{(I)}(D)$ has the same plot profile that we have seen.
- What happens when D gets very close to zero and why?
- A: basically, at zero distortion we are needing to code an infinite resolution Gaussian which will require an infinite rate (infinite precision), similar to what happened with the Gaussian channel without a source power constraint.

Proof of Theorem 23.4.1

Proof.

- We have that

$$R^{(I)}(D) = \min_{f(\hat{x}|x):E(\hat{X}-X)^2 \leq D} I(X;\hat{X}) \quad (23.24)$$

- So we lower bound $I(X;\hat{X})$ under $E(\hat{X}-X)^2 \leq D$:

$$I(X;\hat{X}) = h(X) - h(X|\hat{X}) = \frac{1}{2} \log((2\pi e)\sigma^2) - h(X - \hat{X}|\hat{X})$$

$$\geq \frac{1}{2} \log((2\pi e)\sigma^2) - h(X - \hat{X}) \quad (23.25)$$

$$\geq \frac{1}{2} \log((2\pi e)\sigma^2) - h(\mathcal{N}(0, E(X - \hat{X})^2)) \quad (23.26)$$

$$\geq \frac{1}{2} \log((2\pi e)\sigma^2) - \frac{1}{2} \log((2\pi e)D) \quad (23.27)$$

$$= \frac{1}{2} \log(\sigma^2/D) \quad (23.28)$$
Proof of Theorem 23.4.1

Proof.

- Thus, \(R(D) \geq \frac{1}{2} \log(\sigma^2/D) \)
- Like before, we construct \(f(x) \) and \(f(\hat{x}|x) \) to achieve equality/tightness in the lower bound & distortion \(D \).
- We define it as follows, where \(\hat{X} \perp\!\!\!\!\perp Z \):

\[
X = \hat{X} + Z, \quad \hat{X} \sim \mathcal{N}(0, \sigma^2 - D), \quad Z \sim \mathcal{N}(0, D),
\]

\(\hat{X} \sim \mathcal{N}(0, \sigma^2 - D) \quad \rightarrow \quad X \sim \mathcal{N}(0, \sigma^2) \)

Note also, \(E(X - \hat{X})^2 \leq D \) so we have achieved the distortion constraint. We have:

\[
I(X; \hat{X}) = h(X) - h(X|\hat{X}) = \frac{1}{2} \log(2\pi e)\sigma^2 - h(Z)
\]

\[
= \frac{1}{2} \log(\sigma^2/D)
\]

As always, this rate is achieved by longer block lengths, so short block lengths would not get this rate.

If \(D > \sigma^2 \) we can choose \(\hat{x} = 0 \) w.p.1 for a zero rate code.

To summarize, we then get:

\[
R(D) = \max \left\{ \frac{1}{2} \log \frac{\sigma^2}{D}, 0 \right\}
\]

(23.31)

As always to keep in mind: if \(D > \sigma^2 \) then we can use a rate of \(R = 0 \). If \(D < \sigma^2 \) then we need to allocate some bits.
Example: Multiple Gaussians Unequal Noise

- What would be the rate for multiple Gaussians with different noise? I.e., given $X_{1:m}$ with $X_i \sim \mathcal{N}(0, \sigma_i^2)$ and with $X_i \perp X_j$ for all $i \neq j$, and no requirement for the $\{\sigma_i^2\}_i$’s to be equal.
- Overall distortion is of the form $d(x_{1:m}, \hat{x}_{1:m}) = \sum_{i=1}^m (x_i - \hat{x}_i)^2$ with $E_p(x_{1:m}, \hat{x}_{1:m})[d(X_{1:m}, \hat{X}_{1:m})] \leq D$ where D is overall distortion constraint.
- Information rate distortion function has form:

$$R(D) = \min_{f(\hat{x}_{1:m}|x_{1:m}):E[d(X_{1:m}, \hat{X}_{1:m})] \leq D} I(X_{1:m}; \hat{X}_{1:m}) \quad (23.32)$$

- We need to know how many bits to allocate to each source symbol (and how much “local distortion to use”) to achieve given overall distortion D. Any guesses?

We expand MI as follows:

$$I(X_{1:m}; \hat{X}_{1:m}) = h(X_{1:m}) - h(X_{1:m}|\hat{X}_{1:m}) \quad (23.33)$$

$$= \sum_i h(X_i) - \sum_i h(X_i|\hat{X}_{1:m}, X_{1:i-1}) \quad (23.34)$$

$$\geq \sum_i h(X_i) - \sum_i h(X_i|\hat{X}_i) \quad (23.35)$$

$$= \sum_i I(X_i; \hat{X}_i) \quad (23.36)$$

$$\geq \sum_i R(D_i) = \sum_i \max \left\{ \frac{1}{2} \log \frac{\sigma_i^2}{D_i}, 0 \right\} \quad (23.37)$$

where $D_i = E(X_i - \hat{X}_i)^2$.

Example: Multiple Gaussians Unequal Noise

- To achieve equality, we set
 \[f(\hat{x}_{1:m}|x_{1:m}) = \prod_{i} f(\hat{x}_i|x_i) \]

(23.38)

- And also
 \[\hat{X}_i \sim \mathcal{N}(0, \sigma_i^2 - D_i) = \mathcal{N}(0, \hat{\sigma}_i^2) \]

(23.39)

- Thus, the problem becomes:

The problem becomes:

\[R(D) = \min_{\{D_i\}, \sum_i D_i = D} \sum_{i=1}^{m} \max \left\{ \frac{1}{2} \log \frac{\sigma_i^2}{D_i}, 0 \right\} \]

(23.40)

- This is a convex minimization problem and can be written as:

minimize over \(\{R_i\}, \{D_i\} \)

\[\sum_{i=1}^{m} R_i \]

(23.41)

subject to

\[\sum_{i} D_i = D \]

(23.42)

\[R_i \geq \frac{1}{2} \log \frac{\sigma_i^2}{D_i} \quad \forall i \]

(23.43)

\[R_i \geq 0 \quad \forall i \]

(23.44)
Example: Multiple Gaussians Unequal Noise

- If $D_i < \sigma_i^2$ for all i \((\Rightarrow R_i > 0)\), then this simplifies and we can avoid the constraints on R_i (and R_i altogether, as all rates are guaranteed positive), yielding Lagrangian

$$J(D) = \sum_{i=1}^{m} \left(\frac{1}{2} \ln \frac{\sigma_i^2}{D_i} + \lambda D_i \right) \quad (23.45)$$

$$\Rightarrow \frac{\partial J}{\partial D} = -\frac{1}{2} \frac{1}{D_i} + \lambda = 0 \quad (23.46)$$

$$\Rightarrow D_i = \frac{1}{2\lambda} = \lambda' \forall i \quad (23.47)$$

- So this says that in this case we use the same distortion amount for all source symbols, which is feasible when $D_i < \sigma_i^2$ for all i.

- That is, when $\lambda' = D/m < \sigma_{\text{min}}^2$ where $\sigma_{\text{min}}^2 = \min_i \sigma_i^2$, then $\lambda < \sigma_i^2$ for all i, and we can have $R_i > 0$ for all i.

- As total distortion D increases, λ will also increase eventually hitting one or more of the σ_i^2 values (i.e., $\lambda = \min_i \sigma_i^2$). This will shut off some source symbols as we’ll get $R_i = 0$ for them.

In general, we need to use KKT conditions to get final distortions, very similar to what we did for multiple Gaussian channel uses.

- We get

Theorem 23.4.2

Given parallel Gaussian source $X_i \sim \mathcal{N}(0, \sigma_i^2)$ i.i.d., under squared loss $d(x_1:m, \hat{x}_1:m) = \sum_i (x_i - \hat{x}_i)^2$, we have

$$R(D) = \sum_{i=1}^{m} \frac{1}{2} \log \frac{\sigma_i^2}{D_i} = \sum_{i=1}^{m} R_i \quad (23.48)$$

where

$$D_i = \begin{cases} \lambda & \text{if } \lambda < \sigma_i^2 \ (\Rightarrow R_i > 0) \\ \sigma_i^2 & \text{if } \lambda \geq \sigma_i^2 \ (\Rightarrow R_i = 0) \end{cases} = \min(\lambda, \sigma_i^2) \quad (23.49)$$

and where λ is chosen so that $\sum_i D_i = D$.

Prof. Jeff Bilmes
EE515a/Winter 2014/Information Theory II – Lecture 23 - Jan 22nd, 2014
L23 F35/59 (pg.35/59)
Example: Multiple Gaussians Unequal Noise

- Thus, if σ_i^2 is too small (so that $\lambda > \sigma_i^2$), we allocate no bits to that source symbol.
- If σ_i^2 is sufficiently large, we allocate $R_i = \frac{1}{2} \log \frac{\sigma_i^2}{\lambda}$ bits.
- This is the well known reverse water filling argument (or reverse gravity water filling of tanks hanging from a ceiling).
- Let $\hat{\sigma}_i^2 = \sigma_i^2 - D_i$. Water fills tanks hanging from ceiling in reverse gravity, current water line defines λ which descends and pushes down any D_i with it. This happens until $\sum_i D_i = D$.

Rate-Distortion Theorem: Converse

- Converse of Theorem 23.3.2 states that if $\{X_i\}_i$ is an i.i.d. source with probability distribution $X_i \sim p(x)$, and $d(x, \hat{x})$ is a distortion measure, than any $(2^{nR}, n)$ code with average distortion

$$E[d(X^n, \hat{X}^n)] = \frac{1}{n} \sum_{i=1}^{n} E[d(X_i, \hat{X}_i)] \leq D \quad (23.50)$$

has rate $R > R(I)(D)$
- Alternatively, for any achievable (R, D) pair, we have that $R \geq R(I)(D)$.
- This is analogous to saying that if $P_e \rightarrow 0$, we can’t compress lower than the entropy.
Lemma 23.5.1

$R^{(I)}(D)$ is: (1) non-increasing in D, and (2) convex in D.

Proof.

- First, as $D \uparrow$, we are taking the minimum over a larger set so necessarily $R^{(I)}(D) \downarrow$ as $D \uparrow$.
- Now, consider (R_1, D_1) and (R_2, D_2) on R-D curve of $R^{(I)}(D)$ with, respectively, $p_1(x, \hat{x}) = p(x)p_1(\hat{x}|x)$ and $p_2(x, \hat{x}) = p(x)p_2(\hat{x}|x)$ being two distributions that achieve those pairs respectively.
- Mix them, $p_\lambda = \lambda p_1 + (1 - \lambda)p_2$ which achieves distortion $D_\lambda = \lambda D_1 + (1 - \lambda)D_2 = \sum_{x, \hat{x}} p(x)p_\lambda(\hat{x}|x)d(x, \hat{x})$.
- Recall mutual information is convex in conditional distribution for fixed $p(x)$.
- Hence, $I_{p_\lambda}(X; \hat{X}) \leq \lambda I_{p_1}(X; \hat{X}) + (1 - \lambda)I_{p_2}(X; \hat{X})$ (23.51)

Not surprising, shapes we’ve seen so far are of the form:

Not surprising, shapes we’ve seen so far are of the form:

Not surprising, shapes we’ve seen so far are of the form:

Not surprising, shapes we’ve seen so far are of the form:

Not surprising, shapes we’ve seen so far are of the form:
Proof of converse

Converse: any \((2^n R, n)\) code w. distortion at most \(D \Rightarrow R \geq R^{(I)}(D)\).

proof of converse.

- Reminder: given a \((2^n R, n)\) code defined by functions \(f_n\) and \(g_n\), the reproduction of sequence \(X^n\) is given by:
 \[
 \hat{X}^n = \hat{X}^n(X^n) = g_n(f_n(X^n))
 \]
 \[23.54\]

\[
R(D) = R^{(I)}(D)
\]

Proof of converse

proof of converse.

\[nR \geq H(\hat{X}^n) = H(\hat{X}^n) - H(\hat{X}^n|X^n) = I(\hat{X}^n; X^n) \]
\[23.55\]

\[= H(X^n) - H(X^n|\hat{X}^n) = \sum_{i=1}^{n} H(X_i) - H(X^n|\hat{X}^n) \]
\[23.56\]

\[\geq \sum_{i=1}^{n} H(X_i) - \sum_{i=1}^{n} H(X_i|\hat{X}_i) = \sum_{i=1}^{n} I(X_i; \hat{X}_i) \geq \sum_{i=1}^{n} R^{(I)}(Ed(X_i, \hat{X}_i)) \]

\[= n \sum_{i=1}^{n} \frac{1}{n} R^{(I)}(Ed(X_i, \hat{X}_i)) \geq n R^{(I)}(\frac{1}{n} \sum_{i=1}^{n} Ed(X_i, \hat{X}_i)) \]
\[23.58\]

\[= n R^{(I)}(Ed(X^n, \hat{X}^n)) = n R^{(I)}(D) \]
\[23.59\]

Therefore, \(R \geq R^{(I)}(D)\).
Main Theorem: Achievability

Theorem 23.5.2 (Achievability in 23.3.2)

Given X_i, for $i = 1, \ldots, n$ i.i.d., $\sim p(x)$, and given distortion $d(x, \hat{x})$ and $R^{(I)}(D)$, for any D and any $R > R^{(I)}(D)$, then (R, D) is achievable. I.e. there exists a sequence of $(2^{nR}, n)$ rate-distortion codes with rate R and asymptotic distortion D.

Typicality lives

Definition 23.5.3 (distortion ϵ-typical)

Let $p(x, \hat{x})$ be a joint distortion, $d(x, \hat{x})$ a distortion. For any $\epsilon > 0$, (x^n, \hat{x}^n) (a pair of sequences) is distortion ϵ-typical if all four of the below are true:

\[
\left| -\frac{1}{n} \log p(x^n) - H(X) \right| < \epsilon \quad \text{x-typical} \\
\left| -\frac{1}{n} \log p(\hat{x}^n) - H(\hat{X}) \right| < \epsilon \quad \hat{x}\text{-typical} \\
\left| -\frac{1}{n} \log p(x^n, \hat{x}^n) - H(X, \hat{X}) \right| < \epsilon \quad \text{jointly typical} \\
|d(x^n, \hat{x}^n) - Ed(X, \hat{X})| \leq \epsilon \quad \text{new, “distortion typical”}
\]

Any x s.t. Equations (23.60)-(23.63) are true define the set $A_{d,\epsilon}^{(n)} \subseteq A_{\epsilon}^{(n)}$.
Probability of typicality

Lemma 23.5.4

Let \((x_i, \hat{x}_i) \sim p(x, \hat{x})\). Then \(Pr(A^{(n)}_{d, \epsilon}) \to 1\) as \(n \to \infty\).

Proof.

Simple application of the weak law of large numbers, just like before. □

Note, this is the same as earlier, except for the distortion but since
\[d(x^n, \hat{x}^n) = \frac{1}{n} \sum_{i=1}^{n} d(x_i, \hat{x}_i),\]
we see that \(d(x^n, \hat{x}^n) \to Ed(X, \hat{X})\) by the w.l.l.n. as well.

Main Theorem: Achievability

Proof of achievability in 23.3.2.

- We show that we can construct a random code, and use joint typicality to bound the probability of error as \(n \to \infty\).
- Fix \(p(\hat{x}|x)\) and then calculate \(p(\hat{x}) = \sum_x p(x)p(\hat{x}|x)\).
- Chose \(\epsilon > 0\) and \(\delta > 0\).
- We will show that for any \(R > R^{(1)}(D)\), there exists a code with distortion \(\leq D + \delta\) by generating random codebook.
- Generate a random codebook \(C\) (a set of \(2^{nR}\) codewords,
\(\{\hat{x}_{1:n}(w)\}_{w=1,...,2^{nR}}\). So we need \(2^{nR}\) length-\(n\) sequences, \(\hat{x}^n\) drawn i.i.d.
\(\sim \prod_{i=1}^{n} p(\hat{x}_i)\).
- Use \(w \in \{1, \ldots, 2^{nR}\}\) to index this codebook, and both the encoder and decoder knows the codebook.

...
Main Theorem: Achievability

...proof of achievability in 23.3.2.

Encoding:
- We encode x^n by w if there exists a w such that $(x^n, \hat{x}^n(w)) \in A_d^{(n)}$.
- If such a w does not exist, set $w = 1$. If more than one exists, use least w.
- We need nR bits to describe the codewords (since 2^{nR} codewords). \Rightarrow rate $\approx R$.

Decoding:
- Just produce $\hat{x}^n(w)$.

Distortion:
- Average distortion over both codebooks and codewords:
 \[\bar{D} = E_{X^n,\hat{C}}d(X^n, \hat{X}^n) = \sum_{\hat{C},x^n} \Pr(\hat{C})p(x^n)d(x^n, \hat{x}^n) \]
 (23.64)
- In the above, we take expectation over both random choice of codebooks $\hat{C} = \{\hat{x}^n(1), \hat{x}^n(2), \ldots, \hat{x}^n(2^{nR})\}$ based on probability model $\Pr(\hat{C})$, and also random source strings based on $p(x^n)$. ...
Main Theorem: Achievability

...proof of achievability in 23.3.2.

- then, chose $\epsilon > 0$ and divide sequences x^n into two categories, A and B as below:
 - Category A: $x^n : \exists \hat{x}^n(w)$ with $(x^n, \hat{x}^n(w)) \in A_{d,\epsilon}^{(n)}$ so that $d(x^n, \hat{x}^n(w)) < D + \epsilon$. The probability of these sequences is $\Pr(A_{d,\epsilon}^{(n)}) \to 1$.
 - Category B: x^n s.t. there exists no w with $\hat{x}^n(w)$ jointly distortion typical. Let P_e be the probability of these sequences. If d_{max} is the max distortion, then total distortion for this set is $\leq P_e d_{\text{max}}$.

Total distortion is then

$$\bar{D} = E d(X^n, \hat{X}^n(X^n)) \leq D + \epsilon + P_e d_{\text{max}} < D + \delta$$

(23.65)

for any $\delta > 0$ if ϵ is chosen small, and as long as $P_e \to 0$ as $n \to \infty$

- Trick is to show that P_e gets small fast with $n \to \infty$. ...
Main Theorem: Achievability

... proof of achievability in 23.3.2.

General idea first:
- This gives
 \[P_e \leq \epsilon + (e^2)^{-n(R-I(X;\hat{X}))-3\epsilon} \]
 (23.68)
- So for any \(\delta > 0 \) \(\exists \epsilon, n \) s.t. over all randomly chosen rate \(R \) codes of block length \(n \), the expected distortion \(< D + \delta \).
- This means there must be at least one code \(C^* \) with this rate, block-length, and distortion.
- \(\delta \) is arbitrary \(\Rightarrow (R, D) \) is achievable if \(R > R^{(I)}(D) \).

Subsidiary Theorems

Theorem 23.5.5

\[\forall (x^n, \hat{x}^n) \in A_{d,\epsilon}^{(n)}, \text{ we have} \]

\[p(\hat{x}^n) \geq p(x^n|\hat{x}^n)2^{-n(I(X;\hat{X})+3\epsilon)} \]
(23.69)

Proof.

\[\forall (x^n, \hat{x}^n) \in A_{d,\epsilon}^{(n)}, \text{ we have} \]

\[p(\hat{x}^n|x^n) = \frac{p(\hat{x}^n, x^n)}{p(x^n)} = \frac{p(x^n) p(\hat{x}^n, x^n)}{p(x^n) p(\hat{x}^n)} \]
(23.70)

\[\leq p(\hat{x}^n) \frac{2^{-n(H(X;\hat{X})-\epsilon)}}{2^{-n(H(X)+\epsilon)}2^{-n(H(\hat{X})+\epsilon)}} \]
(23.71)

\[= p(\hat{x}^n)2^{n(I(X;\hat{X})+3\epsilon)} \]
(23.72)
Subsidiary Theorems

Theorem 23.5.6

For $0 \leq x, y \leq 1$ and $n > 0$, we have

$$(1 - xy)^n \leq 1 - x + e^{-yn} \quad (23.73)$$

Proof.

- $f(y) \triangleq e^{-y} - 1 + y \Rightarrow f(0) = 0$.
- and $f'(y) = -e^{-y} + 1 > 0$ for all $y > 0$.
- Thus, $f(y) > 0$ for all $y > 0$.
- \Rightarrow for $0 \leq y \leq 1$, we have $1 - y \leq e^{-y}$, which is a variational lower bound.

... proof continued.

- $\Rightarrow (1 - y)^n \leq e^{-yn}$ which already is the theorem for $x = 1$.
- Also, theorem is clearly true for $x = 0$ since $1 \leq 1 + e^{-yn}$.
- Now, $g_y(x) = (1 - xy)^n$ is convex in x since $\frac{\partial^2 g_y}{\partial x^2} \geq 0$.
- Thus, for all $0 \leq x \leq 1$:

 $$(1 - xy)^n = g_y(x) = g_y((1 - x) \cdot 0 + x \cdot 1) \quad (23.74)$$

 $$\leq (1 - x)g_y(0) + xg_y(1) \quad (23.75)$$

 $$= (1 - x) \cdot 1 + x \cdot (1 - y)^n \quad (23.76)$$

 $$\leq 1 - x + xe^{-y} \quad (23.77)$$

 $$\leq 1 - x + e^{-yn} \quad (23.78)$$
Main Theorem: Achievability

...proof of achievability in 23.3.2.

- Next, we calculate P_e for a randomly chosen source sequence and randomly chosen codebook where there exists no codeword that is distortion typical with the source sequence.
- The set of source sequences s.t. there is at least one codeword in C that is distortion typical with it, is defined as:

$$J(C) = \left\{ x^n : \exists \hat{x}^n \in C \text{ s.t. } (x^n, \hat{x}^n) \in A^{(n)}_{d, \epsilon} \right\} \quad (23.79)$$

- Then, an expression for P_e follows next ...

\[
P_e = \sum_{C} \Pr(C) \sum_{x^n : x^n \notin J(C)} p(x^n) \quad (23.80)
\]
\[
= \sum_{x^n} p(x^n) \sum_{C : x^n \notin J(C)} \Pr(C) \quad (23.81)
\]
\[
= \sum_{x^n} p(x^n) \left\{ \text{total prob of all } 2^nR \text{ current } C \text{ codewords not being distortion typical with current } x^n \text{ (i.e., prob. of choosing codebook not good for current } x^n) \right\} \quad (23.82)
\]
\[
= \sum_{x^n} p(x^n) q^{2^nR} \quad (23.83)
\]

where q is the probability that a single random codeword is not jointly typical with the source sequence.
Main Theorem: Achievability

...proof of achievability in 23.3.2.

- Define $K(x^n, \hat{x}^n) = \begin{cases} 1 & \text{if } (x^n, \hat{x}^n) \in A_{d,\epsilon}^{(n)} \\ 0 & \text{else} \end{cases}$

- Then

$$q = \Pr((x^n, \hat{X}^n) \notin A_{d,\epsilon}^{(n)}) = \Pr(K(x^n, \hat{X}^n) = 0)$$

$$= 1 - \Pr(K(x^n, \hat{X}^n) = 1) = 1 - \sum_{\hat{x}^n} p(\hat{x}^n)K(x^n, \hat{x}^n)$$

$$\leq 1 - \sum_{\hat{x}^n} p(\hat{x}^n|x^n)2^{-n(I(X;\hat{X})+3\epsilon)}K(x^n, \hat{x}^n)$$

This last line follows from Theorem 23.5.5.

...
Main Theorem: Achievability

proof of achievability in 23.3.2.

Now

\[1 - \sum_{x^n, \hat{x}^n} p(x^n)p(\hat{x}^n|x^n)K(x^n, \hat{x}^n) \]
(23.91)

is just \(\Pr((X^n, \hat{X}^n) \notin A^{(n)}_{d,\epsilon}) < \epsilon \) and can be made as small as we want by making \(n \) large.

Also

\[\exp(-2^n(R-I(X;\hat{X})-3\epsilon)) \to 0 \]
(23.92)

if \(R > I(X;\hat{X}) + 3\epsilon \). This is true if we chose \(p(\hat{x}|x) \) to be the distribution that achieves the minimum, so that \(R > R^{(I)}(D) \) implying that \(R > I(X;\hat{X}) + 3\epsilon \) for all \(\epsilon \) as small as we want.