Logistics

Review

Class Road Map - IT-I

- L19 (1/6): Overview, Communications, Gaussian Channel
- L20 (1/8): Gaussian Channel, band limitation, parallel channels, optimization and duality
- L21 (1/13): parallel channels, colored noise, feedback, matrix inequalities
- L22 (1/15): matrix inequalities, rate distortion.
- – (1/20): Monday holiday
- L23 (1/22): rate distortion for Bernoulli, Gaussian, and Multiple Gaussians with unequal noise
- L24 (1/27): main rate distortion theorem, geometry, and computing $R(D)$
- L25 (1/29):
- L26 (2/3):
- L27 (2/5):
- L28 (2/10):
- L29 (2/12):
- – (2/17): Monday, Holiday
- L30 (2/19):
- L31 (2/24):
- L32 (2/26):
- L33 (3/3):
- L34 (3/5):
- L35 (3/10):
- L36 (3/12):

Cumulative Outstanding Reading

- Read Ch. 10 in our book (Cover & Thomas, “Information Theory”).
- Read Ch. 17 in our book (Cover & Thomas, “Information Theory”) on matrix inequalities.
- Read Ch. 9 in our book (Cover & Thomas, “Information Theory”).
- Read Ch. 5 in Boyd and Vandenberghe’s Convex Optimization book.
- Read all readings assigned in EE514a, Fall 2013. (see later lectures on our previous web page [http://j.ee.washington.edu/~bilmes/classes/ee514a_fall_2013/]).

Additional Reading on Rate-Distortion Theory

- “Information Geometry and Alternating Minimization Procedures”, Csiszár & Tusnády, 1983
Homework

- Homework 1 posted on canvas, due Monday (today), 1/27/14 at 11:45pm. Only four problems, but these are good problems (and first three are on Gaussian channels).

Announcements

- Office hours on Mondays, 3:30-4:30.
- As always, email me if you want to skype/google hangout rather than come to office hours, also at different times.
Binary Source $R(D), X \sim \text{Bernoulli}(p)$ r.v.

Theorem 24.2.1

The rate-distortion function $R(D)$ for Bernoulli(p) with $d(x, \hat{x}) = 1_{\{x \neq \hat{x}\}}$ (Hamming distortion) has the following form:

$$R(D) = \begin{cases} H(p) - H(D) & \text{if } 0 \leq D \leq \min\{p, 1-p\} \\ 0 & \text{if } D > \min\{p, 1-p\} \end{cases} \quad (24.1)$$

Gaussian Channels

Theorem 24.2.1

For Gaussian sources $X \sim \mathcal{N}(0, \sigma^2)$ with a squared-error distortion, we have a rate distortion function of the form:

$$R^{(I)}(D) = \begin{cases} \frac{1}{2} \log \frac{\sigma^2}{D} & \text{if } 0 \leq D \leq \sigma^2 \\ 0 & \text{otherwise} \end{cases} \quad (24.18)$$

- Thus, $R^{(I)}(D)$ has the same plot profile that we have seen.
- What happens when D gets very close to zero and why?
- A: basically, at zero distortion we are needing to code an infinite resolution Gaussian which will require an infinite rate (infinite precision), similar to what happened with the Gaussian channel without a source power constraint.
Theorem: Multiple Gaussians Unequal Noise

- In general, we need to use KKT conditions to get final distortions, very similar to what we did for multiple Gaussian channel uses.
- With constraint \(E_p(x_{1:m}, \hat{x}_{1:m})[d(X_{1:m}, \hat{X}_{1:m})] \leq D \), we get:

Theorem 24.2.1

Given parallel Gaussian source \(X_i \sim N(0, \sigma_i^2) \) i.i.d., under squared loss \(d(x_{1:m}, \hat{x}_{1:m}) = \sum_i (x_i - \hat{x}_i)^2 \), we have

\[
R(D) = \sum_{i=1}^{m} \frac{1}{2} \log \frac{\sigma_i^2}{D_i} = \sum_{i=1}^{m} R_i
\]

(24.42)

where

\[
D_i = \begin{cases}
\lambda & \text{if } \lambda < \sigma_i^2 \quad (\Rightarrow R_i > 0) \\
\sigma_i^2 & \text{if } \lambda \geq \sigma_i^2 \quad (\Rightarrow R_i = 0)
\end{cases}
\]

= \min(\lambda, \sigma_i^2) \quad (24.43)

and where \(\lambda \) is chosen so that \(\sum_i D_i = D \).

Review

- The next four slides are a bit more review of earlier slides.
Rate distortion: set up

- A source produces \(x_1, x_2, \ldots \sim p(x) \) based on source distribution \(p(x) \) with \(x_i \in \mathcal{X} \) for all \(i \).
- An encoder \(f_n : \mathcal{X}^n \to \{1, 2, \ldots, 2^{nR}\} \) takes a sequence of source symbols \(x_{1:n} \) and maps them to an integer:
- A decoder \(g_n : \{1, 2, \ldots, 2^{nR}\} \to \hat{\mathcal{X}}^n \) takes an integer and maps to quantized vector (i.e., a codeword).
- A distortion function \(d : \mathcal{X} \times \hat{\mathcal{X}} \to \mathbb{R}^+ \) measures how bad the mapping is. I.e., \(d(x, \hat{x}) \) measures the “cost” of representing \(x \in \mathcal{X} \) by \(\hat{x} \in \hat{\mathcal{X}} \).
- Distortion is bounded (sometimes needed) if \(\exists d_{\text{max}} \) such that \(d_{\text{max}} \triangleq \max_{x, \hat{x}} d(x, \hat{x}) < \infty \).
- Ex: Hamming (probability of error) distortion.

\[
\begin{align*}
 d(x, \hat{x}) &= \begin{cases}
 0 & \text{if } x = \hat{x} \\
 1 & \text{otherwise}
 \end{cases} \quad (24.35)
\end{align*}
\]

Then \(Ed(X, \hat{X}) = \Pr(X \neq \hat{X}) \)

\((2^{nR}, n) \) code

Definition 24.3.7

A \((2^{nR}, n)\) rate distortion code consists of an encoding function

\[
f_n : \mathcal{X}^n \to \{1, 2, \ldots, 2^{nR}\} \quad (24.36)
\]

and a decoding function

\[
g_n : \{1, 2, \ldots, 2^{nR}\} \to \hat{\mathcal{X}}^n \quad (24.37)
\]

(Note, \(H(\hat{\mathcal{X}}^n) \leq nR \) since only \(\leq 2^{nR} \) different codewords.)

The distortion of this code is

\[
D = Ed(X_{1:n}, g_n(f_n(X_{1:n}))) = \sum_{x_{1:n} \in \mathcal{X}^n} p(x_{1:n}) d(x_{1:n}, g_n(f_n(x_{1:n}))) \quad (24.38)
\]
Achievability and rate-distortion pairs

- Def: A distortion rate function \(D(R) \) is the infimum of distortions \(D \) such that \((R, D)\) is in rate distortion region. I.e.,
 \[
 D(R) = \inf \{ D : (R, D) \text{ is achievable} \} \tag{24.37}
 \]

- The next definition is very important

Definition 24.3.7

The “information” rate distortion function \(R(I)(D) \) for source \(X \) and distortion \(d(x, \hat{x}) \) is defined as

\[
R(I)(D) = \min_{p(\hat{x}|x): \sum_x \sum_{\hat{x}} p(x)p(\hat{x}|x)d(x, \hat{x}) \leq D} I(X; \hat{X}) \tag{24.38}
\]

- Let’s now spend a bit of time getting some intuition on this function.

- So \(D \) is the max allowable distortion for code at this rate \(R \).
- We can make errors, but not too many (bounded average distortion).
- The type of errors we can make is entirely dependent on the distortion function.
- Def: A rate distortion region for a source is the closure of achievable rate distortion pairs \((R, D)\).
- Def: A rate distortion function \(R(D) \) is the infimum of rates \(R \) such that \((R, D)\) is in rate distortion region. I.e.,
 \[
 R(D) = \inf \{ R : (R, D) \text{ is achievable} \} \tag{24.38}
 \]
Key Theorem

Theorem 24.3.1

Let \(R(D) \) be the rate-distortion function and let \(R^{(I)}(D) \) be the information rate distortion function. Then

\[
R(D) = R^{(I)}(D)
\]
(24.18)

- This means that the minimum coding rate for achieving distortion \(D \) is, perhaps now unsurprisingly, \(R^{(I)}(D) \).
- Two things to prove: (1) that if \((R, D)\) is achievable, then \(R > R^{(I)}(D) \), and (2) if \(R > R^{(I)}(D) \), then there exists a sequence of codes that can achieve rate-distortion pair \((R, D)\).
- Like in channel capacity and entropy compression case, what happens at \(R = R^{(I)}(D) \) depends on the very specific case that one is analyzing.
- Before proving this key theorem, lets look at Gaussian sources.

Rate-Distortion Theorem: Converse

- Converse of Theorem 24.3.1 states that if \(\{X_i\} \) is an i.i.d. source with probability distribution \(X_i \sim p(x) \), and \(d(x, \hat{x}) \) is a distortion measure, than any \((2^{nR}, n) \) code with average distortion

\[
E[d(X^n, \hat{X}^n)] = \frac{1}{n} \sum_{i=1}^{n} E[d(X_i, \hat{X}_i)] \leq D
\]
(24.1)

has rate \(R > R^{(I)}(D) \)
- Alternatively, for any achievable \((R, D)\) pair, we have that \(R \geq R^{(I)}(D) \).
- This is analogous to saying that if \(P_e \to 0 \), we can’t compress lower than the entropy.
Lemma 24.3.1

\(R^{(I)}(D) \) is: (1) non-increasing in \(D \), and (2) convex in \(D \).

Proof.

- First, as \(D \uparrow \), we are taking the minimum over a larger set so necessarily \(R^{(I)}(D) \downarrow \) as \(D \uparrow \).
- Now, consider \((R_1, D_1)\) and \((R_2, D_2)\) on R-D curve of \(R^{(I)}(D) \) with, respectively, \(p_1(x, \hat{x}) = p(x)p_1(\hat{x}|x) \) and \(p_2(x, \hat{x}) = p(x)p_2(\hat{x}|x) \) being two distributions that achieve those pairs respectively.
- Mix them, \(p_\lambda = \lambda p_1 + (1 - \lambda)p_2 \) which achieves distortion \(D_\lambda = \lambda D_1 + (1 - \lambda)D_2 = \sum x, \hat{x} p(x)p_\lambda(\hat{x}|x)d(x, \hat{x}) \).
- Recall mutual information is convex in conditional distribution for fixed \(p(x) \).
- Hence, \(I_{p_\lambda}(X; \hat{X}) \leq \lambda I_{p_1}(X; \hat{X}) + (1 - \lambda)I_{p_2}(X; \hat{X}) \)

(24.2)

(24.3)

(24.4)

Showing the convexity of \(R^{(I)}(D) \)

- Not surprisingly, shapes we’ve seen so far are of the form:
Proof of converse

Converse: any $(2^{nR},n)$ code w. distortion at most $D \Rightarrow R \geq R^{(I)}(D)$.

Proof of converse.

- Reminder: given a $(2^{nR},n)$ code defined by functions f_n and g_n, the reproduction of sequence X^n is given by:
 \[\hat{X}^n = \hat{X}^n(X^n) = g_n(f_n(X^n)) \] (24.5)

\[nR \geq H(\hat{X}^n) \geq H(\hat{X}^n) - H(\hat{X}^n|X^n) = I(\hat{X}^n;X^n) \] (24.6)
\[= H(X^n) - H(X^n|\hat{X}^n) = \sum_{i=1}^{n} H(X_i) - H(X^n|\hat{X}^n) \] (24.7)
\[\geq \sum_{i=1}^{n} H(X_i) - \sum_{i=1}^{n} H(X_i|\hat{X}_i) = \sum_{i=1}^{n} I(X_i;\hat{X}_i) \geq \sum_{i=1}^{n} R^{(I)}(Ed(X_i,\hat{X}_i)) \] (24.8)
\[= n \sum_{i=1}^{n} \frac{1}{n} R^{(I)}(Ed(X_i,\hat{X}_i)) \geq nR^{(I)}(\frac{1}{n} \sum_{i=1}^{n} Ed(X_i,\hat{X}_i)) \] (24.9)
\[= nR^{(I)}(Ed(X^n,\hat{X}^n)) = nR^{(I)}(D) \] (24.10)

Therefore, $R \geq R^{(I)}(D)$. □
Main Theorem: Achievability

Theorem 24.3.2 (Achievability in 24.3.1)

Given X_i, for $i = 1, \ldots, n$ i.i.d., $\sim p(x)$, and given distortion $d(x, \hat{x})$ and $R^{(1)}(D)$, for any D and any $R > R^{(1)}(D)$, then (R, D) is achievable. I.e., there exists a sequence of $(2^{nR}, n)$ rate-distortion codes with rate R and asymptotic distortion D.

Typicality lives

Definition 24.3.3 (distortion ϵ-typical)

Let $p(x, \hat{x})$ be a joint distortion, $d(x, \hat{x})$ a distortion. For any $\epsilon > 0$, (x^n, \hat{x}^n) (a pair of sequences) is distortion ϵ-typical if all four of the below are true:

\[
\begin{align*}
&| - \frac{1}{n} \log p(x^n) - H(X) | < \epsilon & \text{x-typical} \\
&| - \frac{1}{n} \log p(\hat{x}^n) - H(\hat{X}) | < \epsilon & \hat{x}\text{-typical} \\
&| - \frac{1}{n} \log p(x^n, \hat{x}^n) - H(X, \hat{X}) | < \epsilon & \text{jointly typical} \\
&|d(x^n, \hat{x}^n) - Ed(X, \hat{X})| \leq \epsilon & \text{new, “distortion typical”}
\end{align*}
\]

Any x s.t. Equations (24.11)-(24.14) are true define the set $A_{d, \epsilon}^{(n)} \subseteq A_{\epsilon}^{(n)}$.
Probability of typicality

Lemma 24.3.4

Let \((x_i, \hat{x}_i) \sim p(x, \hat{x}). Then \(\Pr(A_{d,\epsilon}^{(n)}) \to 1\) as \(n \to \infty\).

Proof.

Simple application of the weak law of large numbers, just like before.

Note, this is the same as earlier, except for the distortion but since
\[d(x^n, \hat{x}^n) = \frac{1}{n} \sum_{i=1}^{n} d(x_i, \hat{x}_i),\]
we see that \(d(x^n, \hat{x}^n) \to Ed(X, \hat{X})\) by the w.l.l.n. as well.

Main Theorem: Achievability

proof of achievability in 24.3.1.

- We show that we can construct a random code, and use joint typicality to bound the probability of error as \(n \to \infty\).
- Fix \(p(\hat{x}|x)\) and then calculate \(p(\hat{x}) = \sum_x p(x)p(\hat{x}|x)\).
- Chose \(\epsilon > 0\) and \(\delta > 0\).
- We will show that for any \(R > R^{(I)}(D)\), there exists a code with distortion \(\leq D + \delta\) by generating random codebook.
- Generate a random codebook \(C\) (a set of \(2^{nR}\) codewords, \(\{\hat{x}_{1:n}(w)\}_{w=1}^{2^{nR}}\)). So we need \(2^{nR}\) length-\(n\) sequences, \(\hat{x}^n\) drawn i.i.d. \(\sim \prod_{i=1}^{n} p(\hat{x}_i)\).
- Use \(w \in \{1, \ldots, 2^{nR}\}\) to index this codebook, and both the encoder and decoder knows the codebook.
Main Theorem: Achievability

\[R(D) = R(I(D)) \]

\[\text{Geometry Computing} \]

\[\text{Main Theorem: Achievability} \]

... proof of achievability in 24.3.1.

Encoding:
- We encode \(x^n \) by \(w \) if there exists a \(w \) such that \((x^n, \hat{x}^n(w)) \in A_{d,\epsilon}^{(n)} \).
- If such a \(w \) does not exist, set \(w = 1 \). If more than one exists, use least \(w \).
- We need \(nR \) bits to describe the codewords (since \(2^{nR} \) codewords).
 \[\Rightarrow \text{rate } \approx R. \]

Decoding:
- Just produce \(\hat{x}^n(w) \).

Distortion:
- Average distortion over both codebooks and codewords:
 \[\bar{D} = E_{X^n,\hat{X}^n} d(x^n, \hat{x}^n) = \sum_{C,x^n} \Pr(C)p(x^n)d(x^n, \hat{x}^n) \] \[(24.15) \]
- In the above, we take expectation over both random choice of codebooks \(C = \{ \hat{x}^n(1), \hat{x}^n(2), \ldots, \hat{x}^n(2^{nR}) \} \) based on probability model \(\Pr(C) \), and also random source strings based on \(p(x^n) \).
Main Theorem: Achievability

... proof of achievability in 24.3.1.

- then, chose $\epsilon > 0$ and divide sequences x^n into two categories, A and B as below:
 - Category A: $x^n : \exists \hat{x}^n(w)$ with $(x^n, \hat{x}^n(w)) \in A_{d,\epsilon}^{(n)}$ so that $d(x^n, \hat{x}^n(w)) < D + \epsilon$. The probability of these sequences is $\Pr(A_{d,\epsilon}^{(n)}) \rightarrow 1$.
 - Category B: x^n s.t. there exists no w with $\hat{x}^n(w)$ jointly distortion typical. Let P_e be the probability of these sequences. If d_{max} is the max distortion, then total distortion for this set is $\leq P_e d_{\text{max}}$.
 - Total distortion is then
 \begin{equation}
 \bar{D} = E d(X^n, \hat{X}^n(X^n)) \leq D + \epsilon + P_e d_{\text{max}} < D + \delta
 \end{equation}
 for any $\delta > 0$ if ϵ is chosen small, and as long as $P_e \rightarrow 0$ as $n \rightarrow \infty$.
 - Trick is to show that P_e gets small fast with $n \rightarrow \infty$. ...
Main Theorem: Achievability

...proof of achievability in 24.3.1.

General idea first:
- This gives
 \[P_e \leq \epsilon + (e^2)^{-n(I(X;\hat{X}) - 3\epsilon)} \] (24.19)
- So for any \(\delta > 0 \) \(\exists \epsilon, n \) s.t. over all randomly chosen rate \(R \) codes of block length \(n \), the expected distortion \(< D + \delta \).
- This means there must be at least one code \(C^* \) with this rate, block-length, and distortion.
- \(\delta \) is arbitrary \(\Rightarrow (R, D) \) is achievable if \(R > R^{(I)}(D) \).

Subsidiary Theorems

Theorem 24.3.5

\[\forall (x^n, \hat{x}^n) \in A_{d,\epsilon}^{(n)}, \text{ we have} \]
\[p(\hat{x}^n) \geq p(\hat{x}^n|x^n)2^{-n(I(X;\hat{X}) + 3\epsilon)} \] (24.20)

Proof.

\[\forall (x^n, \hat{x}^n) \in A_{d,\epsilon}^{(n)}, \text{ we have} \]
\[p(\hat{x}^n|x^n) = \frac{p(\hat{x}^n,x^n)}{p(x^n)} = \frac{p(x^n)p(\hat{x}^n|x^n)}{p(x^n)p(\hat{x}^n)} \] (24.21)
\[\leq \frac{p(\hat{x}^n)}{2^{-n(H(X;\hat{X}) - \epsilon)}} \] (24.22)
\[= p(\hat{x}^n)2^{n(I(X;\hat{X}) + 3\epsilon)} \] (24.23)
Subsidiary Theorems

Theorem 24.3.6
For $0 \leq x, y \leq 1$ and $n > 0$, we have

$$ (1 - xy)^n \leq 1 - x + e^{-yn} \quad (24.24) $$

Proof.

- $f(y) \triangleq e^{-y} - 1 + y \Rightarrow f(0) = 0$.
- and $f'(y) = -e^{-y} + 1 > 0$ for all $y > 0$.
- Thus, $f(y) > 0$ for all $y > 0$.
- \Rightarrow for $0 \leq y \leq 1$, we have $0 \leq 1 - y \leq e^{-y}$, which is a variational lower bound.

...proof continued.

- $\Rightarrow (1 - y)^n \leq e^{-yn}$ which already is the theorem for $x = 1$.
- Also, theorem is clearly true for $x = 0$ since $1 \leq 1 + e^{-yn}$.
- Now, $g_y(x) = (1 - xy)^n$ is convex in x since $\frac{\partial^2 g_y}{\partial x^2} \geq 0$.
- Thus, for all $0 \leq x \leq 1$:

$$ (1 - xy)^n = g_y(x) = g_y((1 - x) \cdot 0 + x \cdot 1) \quad (24.25) $$
$$ \leq (1 - x)g_y(0) + xg_y(1) \quad (24.26) $$
$$ = (1 - x) \cdot 1 + x \cdot (1 - y)^n \quad (24.27) $$
$$ \leq 1 - x + xe^{-yn} \quad (24.28) $$
$$ \leq 1 - x + e^{-yn} \quad (24.29) $$
Main Theorem: Achievability

...proof of achievability in 24.3.1.

- Next, we calculate P_e for a randomly chosen source sequence and randomly chosen codebook where there exists **no** codeword that is distortion typical with the source sequence.
- The set of source sequences s.t. there is at least one codeword in C that is distortion typical with it, is defined as:

$$J(C) = \left\{ x^n : \exists \hat{x}^n \in C \text{ s.t. } (x^n, \hat{x}^n) \in A_{d, \epsilon}^{(n)} \right\} \quad (24.30)$$

- Then, an expression for P_e follows next ...

$$P_e = \sum_C \Pr(C) \sum_{x^n : x^n \notin J(C)} p(x^n) \quad (24.31)$$

$$= \sum_{x^n} p(x^n) \sum_{C : x^n \notin J(C)} \Pr(C) \quad (24.32)$$

$$= \sum_{x^n} p(x^n) \begin{cases} \text{total prob of all } 2^{nR} \text{ current } C \text{ codewords not being distortion typical with current } x^n \quad \text{(i.e., prob. of choosing codebook not good for current } x^n) \end{cases} \quad (24.33)$$

$$= \sum_{x^n} p(x^n) q^{2^{nR}} \quad (24.34)$$

where q is the probability that a single random codeword is not jointly typical with the current x^n. ...
Main Theorem: Achievability

... proof of achievability in 24.3.1.

- Define \(K(x^n, \hat{x}^n) = \begin{cases} 1 & \text{if } (x^n, \hat{x}^n) \in A_{d, \epsilon}^{(n)} \\ 0 & \text{else} \end{cases} \)

- Then

\[
q = \Pr((x^n, \hat{X}^n) \notin A^{(n)}_{d, \epsilon}) = \Pr(K(x^n, \hat{X}^n) = 0) = 1 - \Pr(K(x^n, \hat{X}^n) = 1) = 1 - \sum_{\hat{x}^n} p(\hat{x}^n) K(x^n, \hat{x}^n)
\]

\[
\leq 1 - \sum_{\hat{x}^n} p(\hat{x}^n|x^n) 2^{-n(I(X;\hat{X})+3\epsilon)} K(x^n, \hat{x}^n) \tag{24.37}
\]

- This last line follows from Theorem 24.3.5.

...
Main Theorem: Achievability

...proof of achievability in 24.3.1.

Now

\[1 - \sum_{x^n, \hat{x}^n} p(x^n)p(\hat{x}^n|x^n)K(x^n, \hat{x}^n) \] \hspace{1cm} (24.42)

is just \(\Pr((X^n, \hat{X}^n) \notin \mathcal{A}^{(n)}_{d,\epsilon}) \) and is \(< \epsilon \) and can be made as small as we want by making \(n \) large.

Also

\[\exp\left(-2^n(R-I(X;\hat{X})-3\epsilon)\right) \to 0 \] \hspace{1cm} (24.43)

if \(R > I(X;\hat{X})+3\epsilon \). This is true when we chose \(p(\hat{x}|x) \) to be the distribution that achieves the minimum, and since \(R > I(X;\hat{X}) = R^{(I)}(D) \) in this case, we get \(R > I(X;\hat{X})+3\epsilon \) for all \(\epsilon \) as small as we want for large \(n \).

Reminder: Geometry of channel capacity

- \(Y = X + Z \) where \(Z \sim \mathcal{N}(0,\sigma^2) \), \(X \sim \mathcal{N}(0, P) \) and \(X \perp Z \).
- Typical \(X \)-set \(A^{(n)}_{\epsilon} \) with volume \(\leq 2^{n(h(X)+\epsilon)} \), \(Y \)-given-\(X \) conditional typical set with volume \(\leq 2^{n(h(Y|X)+\epsilon)} = 2^{n(h(Z)+\epsilon)} \), and unconditional typical \(Y \)-set has volume \(\leq 2^{n(h(Y)+\epsilon)} \), and

\[
\begin{align*}
 h(Y) &\leq \frac{1}{2} \log[2\pi e(P + \sigma^2)] \\
 h(Z) &\leq \frac{1}{2} \log[2\pi e(\sigma^2)]
\end{align*}
\] \hspace{1cm} (24.44) \hspace{1cm} (24.45)

- Number of \(X \)-conditional volumes packable into available \(Y \)-volume:

\[
\frac{2^{nh(Y)}}{2^{nh(Z)}} = \frac{2^{nh(Y)}}{2^{nh(Z)}} \approx 2^{\frac{n}{2} \log \frac{P+\sigma^2}{\sigma^2}} = \left(\frac{P}{\sigma^2}\right)^{n/2}
\]

The above is measured in counts for \(n \) channel usages. To convert it into bits per channel use, we take log and divide by \(n \) to get

\[R = \frac{1}{2} \log(1 + P/\sigma^2) \] \hspace{1cm} (24.46)

Assuming no overlap of volumes which is best we can do, so \(R = C_x \).
Reminder: Geometry of channel capacity

- Sphere-packing: typical set volume can be approximately identified with the volume of a sphere in \mathcal{R}^n.
- For the noise
 \[V(r, n) = \frac{\pi^{n/2}}{\Gamma(\frac{n}{2} + 1)} r^n = 2^{n/2} \log[2\pi e \sigma^2] \]
 \[(24.47) \]
- This gives
 \[r_{\sigma^2} = \Gamma^{1/2}(\frac{n}{2} + 1)(2e\sigma^2)^{1/2} \approx (2e\sigma^2 n)^{1/2} = \sqrt{2e\sigma^2 n} \]
 \[(24.48) \]
- So, the number of messages M is of the form:
 \[M \leq \left(\frac{r_{\sigma^2} + P}{r_{\sigma^2}}\right)^n = \left(\frac{\sigma^2 + P}{\sigma^2}\right)^{n/2} \]
 \[(24.49) \]
- Goal is to pack as many small spheres in the big sphere as possible.

Geometry of Rate Distortion

- Source $X \sim \mathcal{N}(0, \sigma^2)$.
- A $(2^nR, n)$ code with distribution $< D$ is a set of 2^nR sequences in \mathcal{R}^n s.t. most x^n are “near” a codeword.
- Sources live in sphere of radius $(n\sigma^2)^{1/2}$.
- Goal is to use the fewest number of codewords s.t. every source sequence X^n is within \sqrt{nD} of some codeword.
- Minimum number of such words is
 \[\approx \left[\frac{(n\sigma^2)^{1/2}}{(nD)^{1/2}}\right]^n = \left(\frac{\sigma^2}{D}\right)^{n/2} = 2^{nR(D)} \]
 \[(24.50) \]
 for Gaussian sources.
Geometry of Rate Distortion

- Let $h(X) = \frac{1}{2} \log(2\pi e\sigma^2)$ be a large sphere.
- $h(\hat{X}|X) = h(Z) = \frac{1}{2} \log(2\pi eD)$ is a small sphere, and is a region corresponding to codeword \hat{x} in the form of a log volume.
- To make sure that no x^n is too far away from codeword, need to spread out (or cover) the large volume as much as possible.
- The minimum number of such codewords is then:

$$\geq \frac{2^n h(X)}{2^n h(Z)} = \frac{2^n}{2^{\frac{n}{2}}} \log(2\pi e\sigma^2) = \left(\frac{\sigma^2}{D}\right)^{n/2} = 2^n R(D) \quad (24.51)$$

- Again, meaning $R = \frac{1}{2} \log(\sigma^2/D)$ bits per source symbol to compress with distortion D.

General Multivariate Normal

- Suppose $X \sim \mathcal{N}(0, C)$ where C is general positive definite matrix.
- Then $R(D)$ can be easily and analytically calculated by using the reverse water filling argument on the eigenvalues of C.
- This is analogous to the water filling argument for computing the channel capacity of a general Gaussian.
We’ve seen that for certain special cases (e.g., Bernoulli sources, Gaussian sources, and now also for Gaussian vector w. full covariance matrix), we can compute $R(D) = R(I)(D)$ exactly.

What if we do not have such simple properties of X?

Let $X \sim p(x)$ which is over multi-alphabet \mathcal{X}.

Goal: compute in general

$$R(D) = \min_{q(\hat{x}|x): \sum_{x,\hat{x}} p(x)q(\hat{x}|x)d(x,\hat{x}) \leq D} I(X; \hat{X}) \quad (24.52)$$

Can restate this problem as:

$$R(D) = \min_{q(\hat{x}|x)} I(X; \hat{X}) \quad (24.53)$$

s.t. $q(\hat{x}|x) \geq 0 \; \forall \hat{x}, x$ \quad (24.54)

$$\sum_{\hat{x}} q(\hat{x}|x) = 1 \; \forall x \quad (24.55)$$

$$\sum_{\hat{x}, x} q(\hat{x}|x)p(x)d(x,\hat{x}) = D \quad (24.56)$$

where

$$I(X; \hat{X}) = \sum_{x,\hat{x}} p(x)q(\hat{x}|x) \log \frac{q(\hat{x}|x)}{q(\hat{x})} \quad (24.57)$$

and $q(\hat{x}) = \sum_{x} p(x)q(\hat{x}|x) \quad (24.58)$
Marginalization vs. Projection

- We’re going to see that the marginalization \(q(\hat{x}) = \sum_x p(x)q(\hat{x}|x) \)
 can be viewed as a form of projection.
- Generic projection. We have distance measure \(d(\cdot, \cdot) \) and a constraint set \(\mathcal{P} \),
 and a vector \(\hat{x} \notin \mathcal{P} \).
- We want to find the member of \(\mathcal{P} \) that is closest to \(\hat{x} \) where closeness is measured
 via \(d(\cdot, \cdot) \), i.e.,
 \[
 x^* \in \arg\min_{x \in \mathcal{P}} d(\hat{x}, x) \tag{24.59}
 \]

\[\hat{x} \]
\[\mathcal{P} \]
\[x^* \]

Computing \(R(D) \)

- Both inequality (Eq.\((24.54)) \) and equality constraints (Eqs.\((24.55)\&(24.56)) \).
- We have convex objective in \(q(\hat{x}|x) \) for fixed \(p(x) \).
- Q: Why ok to equal \(D \) and not \(\leq D \) in the above? A: we know can only make \(R(D) \) smaller
 by making \(D \) larger.
- For the moment, lets ignore the inequality constraint \(q(\hat{x}|x) \geq 0 \) and hope that we find everywhere positive solutions.
- We get objective (Lagrangian) in the form:
 \[
 J(Q) = \sum_{x, \hat{x}} p(x)q(\hat{x}|x) \log \frac{q(\hat{x}|x)}{q(\hat{x})} \\
 + \lambda \left(\sum_{x, \hat{x}} p(x)q(\hat{x}|x)d(x, \hat{x}) - D \right) \\
 + \sum_x \nu(x) \left(\sum_{\hat{x}} q(\hat{x}|x) - 1 \right) \tag{24.60}
 \]
Computing $\mathcal{R}(D)$

- Eq (24.60) satisfies Slater’s conditions, so strong duality holds, and the objective and all constraints are differentiable.
- Thus, happily, the KKT conditions hold,
- so we need

$$\frac{\partial J}{\partial q(\hat{x} | x)} = 0 \Rightarrow |\mathcal{X}| |\hat{\mathcal{X}}| \text{ equations} \quad (24.61)$$

- The equality constraints give us an additional $|\mathcal{X}| + 1$ equations.
- How many unknowns? $|\mathcal{X}| |\hat{\mathcal{X}}|$, so this should be solvable (if feasible, and assume is).
- If solution is such that $q(\hat{x} | x) > 0$ for all x, \hat{x} then we have solved the problem since this solution is a minimum without requiring the inequality constraints (and we still have equality constraint $\sum_{\hat{x}} q(\hat{x} | x) = 1$ so solution is feasible).

When might this occur? Small D requires a high rate, meaning we need to use all of the symbols in $\hat{\mathcal{X}}$.
- It might even be that for all $0 \leq D \leq D_{\text{max}}$, we use all symbols.
- If, on the other hand, there are one or more $q(\hat{x} | x)$ that are negative, then the min of $I(X; \hat{X})$ falls outside of the probability simplex (defined as $\Delta q(\hat{x}, x)$)
- $\Delta q(\hat{x}, x)$ is convex, so in this case, the minimization with the constraint must lie on a boundary of this convex set (essentially KKT conditions).
Computing $R(D)$

- So, if solution of problem without inequality constraint is negative (say $q(\hat{x}'|x) < 0$ for some \hat{x}'), then projection back onto convex $\Delta q(x,\hat{x})$ at boundary will set it to zero.
- That is, we get that $q(\hat{x}'|x) = 0$
- This means we can essentially “remove” an alphabet symbol (or several such symbols) and form a compressed alphabet $\hat{\mathcal{X}}'$ where $|\hat{\mathcal{X}}'| < |\hat{\mathcal{X}}|$
- This happens when D is big, and by minimizing the rate, we don’t need to “use up” all the symbols in $\hat{\mathcal{X}}$.
- General result: convex minimization over a convex set, an update to minimize objective without constraint need only be projected back to nearest point in convex set.
- Thus, lets first solve the partially unconstrained problem (i.e., the one without the inequality constraints, Eq.(24.54).

First, define $\mu(x) \triangleq e^{-\frac{\nu(x)}{p(x)}}$ so that $-\log \mu(x) = \nu(x)/p(x)$.

The objective can be stated, ignoring constants that cancel out when taking derivatives, as:

$$J(q) = \sum_{x,\hat{x}} p(x)q(\hat{x}|x) \left[\log \frac{q(\hat{x}|x)}{q(\hat{x})} + \lambda d(x, \hat{x}) + \frac{\nu(x)}{p(x)} \right]$$ \hfill (24.62)

$$= \sum_{x,\hat{x}} p(x)q(\hat{x}|x) \left[\log \frac{q(\hat{x}|x)}{q(\hat{x})\mu(x)} + \lambda d(x, \hat{x}) \right]$$ \hfill (24.63)

$$= \sum_{x,\hat{x}} p(x)q(\hat{x}|x) \beta(x, \hat{x})$$ \hfill (24.64)

where

$$\beta(x, \hat{x}) = \left[\log \frac{q(\hat{x}|x)}{q(\hat{x})\mu(x)} + \lambda d(x, \hat{x}) \right]$$ \hfill (24.65)
Computing $R(D)$

- After some algebra, we get:

$$\frac{\partial J}{\partial q(\hat{x}|x)} = p(x) \left[\log \frac{q(\hat{x}|x)}{q(\hat{x})\mu(x)} + \lambda d(x, \hat{x}) \right] = 0 \quad (24.66)$$

- Implying that

$$q(\hat{x}|x) = \frac{q(\hat{x})e^{-\lambda d(x, \hat{x})}}{\mu(x)} = \frac{q(\hat{x})e^{-\lambda d(x, \hat{x})}}{\sum \hat{y} q(\hat{y})e^{-\lambda d(x, \hat{y})}} \quad (24.67)$$

- This expresses $q(\hat{x}|x)$ in terms of $q(\hat{x})$, so if we can solve for $q(\hat{x})$, then we can get $q(\hat{x}|x)$. We first do a little intuition.

The update is:

$$q(\hat{x}|x) = \frac{q(\hat{x})e^{-\lambda d(x, \hat{x})}}{\mu(x)} = \frac{q(\hat{x})e^{-\lambda d(x, \hat{x})}}{\sum \hat{y} q(\hat{y})e^{-\lambda d(x, \hat{y})}} \quad (24.68)$$

- Note that $\mu(x) = \sum \hat{y} q(\hat{y})e^{-\lambda d(x, \hat{y})}$ since $\sum \hat{x} q(\hat{x}|x) = 1$.
- If $d(x, \hat{x})$ is large, then $q(\hat{x}|x)$ will be small. Makes sense that we don’t in general want to use \hat{x} for x if distortion is large.
- This, however, is balanced by overall $q(\hat{x})$ which will force us to start using \hat{x} for x if $q(\hat{x})$ is large.
Computing $R(D)$

- To solve for $q(\hat{x})$, we find $q(\hat{x}) = \sum_x p(x)q(\hat{x}|x)$, yielding:

$$\hat{q}(\hat{x}) = \sum_x p(x) \left(\frac{q(\hat{x})e^{-\lambda d(x,\hat{x})}}{\sum_{\hat{y}} q(\hat{y})e^{-\lambda d(x,\hat{y})}} \right)$$

$$= \frac{\hat{q}(\hat{x})}{\sum_{\hat{y}} q(\hat{y})e^{-\lambda d(x,\hat{y})}}$$

(24.69)

(24.70)

- So, for all \hat{x} such that $q(\hat{x}) > 0$ we have

$$C(\hat{x}) = \sum_x p(x)e^{-\lambda d(x,\hat{x})} \sum_{\hat{y}} q(\hat{y})e^{-\lambda d(x,\hat{y})} = 1$$

(24.71)

- Thus, if $q(\hat{x}) > 0$ for all \hat{x}, then this defines $|\hat{X}|$ simultaneous equations $\{C(\hat{x}) = 1\}_{\forall \hat{x}}$ which, along with the distortion constraint equation, can be used to solve the $|\hat{X}|$ unknown quantities $\{q(\hat{x})\}_{\forall \hat{x}}$, for the current λ.

Computing $R(D)$

- According to Eq. (24.68), as long as $q(\hat{x}) > 0$ then $q(\hat{x}|x) > 0$ as well.

- So, we can then choose a λ and use it to compute particular point on the $R(D)$ curve.
Computing $R(D)$

- For a given set of values $(\lambda, \{q(\hat{x})\})$, we have
 \[
 D = \sum_{x, \hat{x}} \frac{p(x)}{\mu(x)} q(\hat{x}) e^{-\lambda d(x, \hat{x})} = D(\lambda, \{q(\hat{x})\})
 \]
 (24.72)

- It can also be shown that
 \[
 R = - (\lambda D + \sum_x p(x) \log \mu(x)) = R(\lambda, \{q(\hat{x})\})
 \]
 (24.73)

\[
= sD + \sum_x p(x) \log 1/\mu(x) \quad \text{where } s = -\lambda
\]
 (24.74)

- Since $s = -\lambda$ determines D, if s yields a large enough D we will ultimately get some cases where $q(\hat{x}) \leq 0$.
- In fact, this is sufficient to eliminate all instances of \hat{x} as we now show.

\[\text{Prof. Jeff Bilmes} \quad \text{EE515a/Winter 2014/Information Theory II – Lecture 24 - Jan 27nd, 2014} \quad \text{L24 F55/60 (pg.55/60)}\]

Theorem 24.5.1

\[\forall s > -\infty, \text{ for optimal } q(\hat{x}), \text{ if } q(\hat{x}|x) = 0 \text{ for any one } x \text{ then } q(\hat{x}|x) = 0 \text{ for all } x. \text{ Thus, that particular } \hat{x} \text{ may be deleted from the alphabet.}\]

Proof.

- Let's bring the inequality constraints back in for $q(\hat{x}|x) \geq 0$ for a particular (\hat{x}, x) pair:
 \[
 L(q) = J(q) + \gamma q(\hat{x}|x)
 \]
 (24.75)

- Then setting $\frac{\partial L}{\partial p(\hat{y}|x)} = 0$ gives
 \[
 q(\hat{y}|x) = \begin{cases}
 q(\hat{y}) \mu(x) e^{sd(x, \hat{y})} & \text{if } \hat{y} \neq \hat{x} \\
 q(\hat{x}) \mu(x) e^{sd(x, \hat{x}) + \gamma/p(x)} & \text{if } \hat{y} = \hat{x}
 \end{cases}
 \]
 (24.76)
Proof.

- Since $1 = \sum_{\hat{y}} q(\hat{y}|x)$, we have that
 \[
 \mu(x) = \sum_{\hat{y}} q(\hat{y}) e^{f(\hat{y}, x)} > 0 \tag{24.77}
 \]
 - Note that the above inequality is strict since $e^{f(\hat{y}, x)} > 0$ and $q(\hat{y}) \geq 0$.
 - Thus, $\mu(x) > 0$ strictly for all x.
 - If $q(\hat{x}|x) = 0$, it must be due to $q(\hat{x}) = 0$ and not due to either $\mu(x)$ or to the $e^{(0)}$ factor, as long as $s > -\infty$.
 - But if $q(\hat{x}) = 0$ then we have $q(\hat{x}|x) = 0$ for all x.

More intuition: From previous definition, we have

\[
q(\hat{x}|x) = \frac{q(\hat{x}) e^{-\lambda d(x, \hat{x})}}{\sum_{\hat{y}} q(\hat{y}) e^{-\lambda d(x, \hat{y})}} \tag{24.78}
\]

- If $q(\hat{x}|x) = 0$ for some \hat{x}, then this must be due to $q(\hat{x}) = 0$ since nothing else in the definition can be 0.
- We also have a nice meaning for $s = -\lambda$.
Computing $R(D)$

Theorem 24.5.2

The parameter $s = -\lambda$ represents the slope of the rate-distortion function at the point (D_s, R_s) that one generates parametrically from the parametric form above. I.e.

$$R' = \frac{dR}{dD} \bigg|_{D_s} = s \quad (24.79)$$

Proof.

Take derivatives and use the chain rule . . .

- Pictorially,

Thus, we have a way to compute $R(D)$ in principle for any $s = -\lambda$.

To get the resulting distribution, we need to find the $q(\hat{x})$ values, and if < 0 remove symbols, and repeat.

We continue this process until all are positive.

If we have only one left, then we have a $R = 0$ case.

Also, solution to the set of equations might be hard (or an analytical solution might not exist).

Fortunately, there is a better way to do this.