Class Road Map - IT-I

L19 (1/6): Overview, Communications, Gaussian Channel
L20 (1/8): Gaussian Channel, band limitation, parallel channels, optimization and duality
L21 (1/13): parallel channels, colored noise, feedback, matrix inequalities
L22 (1/15): matrix inequalities, rate distortion.
– (1/20): Monday holiday
L23 (1/22): rate distortion for Bernoulli, Gaussian, and Multiple Gaussians with unequal noise
L24 (1/27): main rate distortion theorem, geometry
L25 (1/29): computing $R(D)$
L26 (2/3): computing $R(D)$, alternating minimization
L27 (2/5):
L28 (2/10):
L29 (2/12):
– (2/17): Monday, Holiday
L30 (2/19):
L31 (2/24):
L32 (2/26):
L33 (3/3):
L34 (3/5):
L35 (3/10):
L36 (3/12):

Cumulative Outstanding Reading

- Read Ch. 10 in our book (Cover & Thomas, “Information Theory”).
- Read Ch. 17 in our book (Cover & Thomas, “Information Theory”) on matrix inequalities.
- Read Ch. 9 in our book (Cover & Thomas, “Information Theory”)
- Read Ch. 5 in Boyd and Vandenberghe’s Convex Optimization book
- Read all readings assigned in EE514a, Fall 2013. (see later lectures on our previous web page (http://j.ee.washington.edu/~bilmes/classes/ee514a_fall_2013/)).
Additional Reading on Rate-Distortion Theory

- “Information Geometry and Alternating Minimization Procedures”, Csiszár & Tusnády, 1983

Homework

- No current outstanding HW.
Announcements

- Office hours on Mondays, 3:30-4:30 (but not this afternoon).
- As always, email me if you want to skype/google hangout rather than come to office hours, also at different times.
On Final Presentations

- Your task is to give a 10-15 minute presentation that summarizes 2-3 related and significant papers that come from IEEE Transactions on Information Theory (or a very related area).
- The papers must not be ones that we covered in class, although they can be related.
- You need to do the research to find the papers yourself (i.e., that is part of the assignment).
- The majority of the papers must have been published in the last 10 years (so no old or classic papers).
- Your grade will be based on how clear, understandable, and accurate your presentation is (and also milestones).
- This is a real challenge and will require significant work! Many of the papers are complex. To get a good grade, you will need to work very hard to present very complex ideas in an extremely simple yet still precise way.
- Again, don’t expect this to be easy, you might need to try a few topics until you find one that is suitable.
Final Presentation Milestones

All submissions done in PDF file format via our assignment dropbox (https://canvas.uw.edu/courses/880971/assignments)

- **Monday, Feb 17th, 11:45pm**: Candidate proposed papers submitted. Include short **at most** 1-page writeup: 1) why you chose these papers; 2) how they are related to each other; 3) why they are important to pure IT; and 4) how they are fundamental and/or deep, and 5) how will you summarize them in a simple and precise way.
- **Monday, Feb 24th 11:45pm**: Updated list of proposed papers decided, based on feedback. Updated writeup with more description.
- **Monday, March 3rd 11:45pm**: progress report (at most 1 page). Any background papers you needed to read to better understand your core set. Thoughts on coherent and simple unifying presentation.
- **Monday, March 10th, 11:45pm**: updated short (≤ 1 page) writeup on more details of how you will present the ideas in a simple fashion.
- **Final presentations**: Monday, March 17, 2014, 2:30–4:20pm, LOW 102. What to turn in: your slides and a short at most 4 page summary of the papers.
We’ve seen that for certain special cases (e.g., Bernoulli sources, Gaussian sources, and now also for Gaussian vector w. full covariance matrix), we can compute $R(D) = R^{(I)}(D)$ exactly.

What if we do not have such simple properties of X?

Let $X \sim p(x)$ which is over multi-alphabet \mathcal{X}.

Goal: compute in general

$$R(D) = \min_{q(\hat{x}|x): \sum_x \sum_{\hat{x}} p(x)q(\hat{x}|x)d(x,\hat{x}) \leq D} I(X; \hat{X})$$ \hspace{1cm} (25.1)
The update is:

\[q(\hat{x}|x) = \frac{q(\hat{x})e^{-\lambda d(x,\hat{x})}}{\mu(x)} = \frac{q(\hat{x})e^{-\lambda d(x,\hat{x})}}{\sum_{\hat{y}} q(\hat{y})e^{-\lambda d(x,\hat{y})}} \quad (25.16) \]

Note that to make this a valid normalized distribution, we must take
\[\mu(x) = \sum_{\hat{y}} q(\hat{y})e^{-\lambda d(x,\hat{y})} \text{ since } \sum_{\hat{x}} q(\hat{x}|x) = 1. \]

If \(d(x, \hat{x}) \) is large, then \(q(\hat{x}|x) \) will be small. Makes sense that we don’t in general want to use \(\hat{x} \) for \(x \) if distortion is large.

This, however, is balanced by overall \(q(\hat{x}) \) which will force us to start using \(\hat{x} \) for \(x \) if \(q(\hat{x}) \) is large.
Computing $R(D)$

- To solve for $q(\hat{x}) > 0$, we find $q(\hat{x}) = \sum_x p(x)q(\hat{x}|x)$, yielding:

$$q(\hat{x}) = \sum_x p(x) \left(\frac{q(\hat{x})e^{-\lambda d(x,\hat{x})}}{\sum_{\hat{y}} q(\hat{y})e^{-\lambda d(x,\hat{y})}} \right)$$

$$= q(\hat{x}) \frac{\sum_x p(x)e^{-\lambda d(x,\hat{x})}}{\sum_{\hat{y}} q(\hat{y})e^{-\lambda d(x,\hat{y})}}$$

(25.16)

(25.17)

- So, for all \hat{x} such that $q(\hat{x}) > 0$ we have

$$C(\hat{x}) = \sum_x \frac{p(x)e^{-\lambda d(x,\hat{x})}}{\sum_{\hat{y}} q(\hat{y})e^{-\lambda d(x,\hat{y})}} = 1$$

(25.18)

- Thus, if $q(\hat{x}) > 0$ for all \hat{x}, then this defines $|\hat{X}|$ simultaneous equations ($\{C(\hat{x}) = 1\}_{\forall \hat{x}}$) which, along with the distortion constraint equation, can be used to solve the $|\hat{X}|$ unknown quantities ($\{q(\hat{x})\}_{\forall \hat{x}}$), for the current λ.

Computing $R(D)$

Theorem 25.2.1

\(\forall s > -\infty \), for optimal \(q(\hat{x}) \), if \(q(\hat{x}|x) = 0 \) for any one \(x \) then \(q(\hat{x}|x) = 0 \) for all \(x \). Thus, that particular \(\hat{x} \) may be deleted from the alphabet.

Proof.

- Lets bring the inequality constraints back in for \(q(\hat{x}|x) \geq 0 \) for a particular \((\hat{x}, x)\) pair:

\[
L(q) = J(q) + \gamma q(\hat{x}|x)
\]

(25.16)

- Then setting \(\frac{\partial L}{\partial p(\hat{y}|x)} = 0 \), we get the following relation

\[
q(\hat{y}|x) = \begin{cases}
\frac{q(\hat{y})}{\mu(x)} e^{sd(x,\hat{y})} & \text{if } \hat{y} \neq x \\
\frac{q(\hat{y})}{\mu(x)} e^{sd(x,\hat{y})+\gamma/p(x)} & \text{if } \hat{y} = x
\end{cases}
\]

(25.17)
Computing $R(D)$

Theorem 25.2.1

The parameter $s = -\lambda$ represents the slope of the rate-distortion function at the point (D_s, R_s) that one generates parametrically from the parametric form above. I.e.

$$R' = \frac{dR}{dD} \bigg|_{D_s} = s$$

(25.18)

Proof.

Take derivatives and use the chain rule . . .

- Pictorially,
Computing $R(D)$

- For a given set of values $(\lambda, \{q(\hat{x})\})$, we have

$$D = \sum_{x, \hat{x}} \frac{p(x)}{\mu(x)} q(\hat{x}) e^{-\lambda d(x, \hat{x})} = D(\lambda, \{q(\hat{x})\}) \quad (25.16)$$

- It can also be shown, moreover, that

$$R = -(\lambda D + \sum_x p(x) \log \mu(x)) = R(\lambda, \{q(\hat{x})\}) \quad (25.17)$$

$$= sD + \sum_x p(x) \log 1/\mu(x) \quad \text{where } s = -\lambda \quad (25.18)$$

- Since $s = -\lambda$ determines D, if s yields a large enough D we will ultimately get some cases where $q(\hat{x}) \leq 0$.

- In fact, this is sufficient to eliminate all instances of \hat{x} as we now further show.
Thus, we have a way to compute $R(D)$ in principle for any $s = -\lambda$.

To get the resulting distribution, we need to find the $q(\hat{x})$ values, and if < 0 remove symbols, and repeat (KKT conditions allow us to consider the case when $q(\hat{x}) > 0$ vs. $q(\hat{x}) \leq 0$).

We continue this process until all are positive.

If we have only one left, then we have a $R = 0$ case.

Also, solution to the set of equations might be hard (or an analytical solution might not exist).

Fortunately, there is a better way to do all of this, as we now proceed to show.
Consider the problem: we have two convex sets $A, B \subseteq \mathbb{R}^n$.

We have a distance (e.g., Euclidean, or 2-norm) $d(a, b)$.

Goal is to form:

$$d_{\min} = \min_{a \in A, b \in B} d(a, b) \quad (25.18)$$

Consider the following algorithm:

1. Choose $a_0 \in A$ arbitrarily;
2. for $n = 1 \ldots$ do
 3. Choose $b_n \in \operatorname{argmin}_{b \in B} d(a_{n-1}, b)$;
 4. Choose $a_n \in \operatorname{argmin}_{a \in A} d(a, b_n)$;
In the slides that will soon follow, we will prove the conditions under which it will be the case that

\[
\lim_{n \to \infty} d(a_n, b_n) = d(a^*, b^*)
\]

(25.18)

where

\[
(a^*, b^*) = \arg\min_{a,b} d(a, b)
\]

(25.19)

and

\[
\lim_{n \to \infty} a_n = a^*, \quad \lim_{n \to \infty} b_n = b^*
\]

(25.20)

For now, let's assume that it works for both rate distortion and channel capacity, and derive these cases.
Theorem 25.2.1

Let \(p(x, y) = p(x)p(y|x) \). Then

1. If \(r^*(y) = \sum_x p(x)p(y|x) \), then

\[
D(p(x)p(y|x) \| p(x)r^*(y)) = \min_{r(y) \in \Delta} D(p(x)p(y|x) \| p(x)r(y))
\]
(25.18)

2. If \(r^*(x|y) = \frac{p(x)p(y|x)}{\sum_x p(x)p(y|x)} = p(x|y) \) then

\[
\max_{r(x|y) \in \Delta^2} \sum_{x,y} p(x)p(y|x) \log \frac{r(x|y)}{p(x)} = \sum_{x,y} p(x)p(y|x) \log \frac{r^*(x|y)}{p(x)}
\]
(25.19)
Another way of seeing these theorems is that we have:

\[
I(X;Y) = \sum_{x,y} p(x,y) \log \frac{p(x,y)}{p(x)p(y)} \quad (25.1)
\]

\[
= \min_r (y) \sum_{x,y} p(x,y) \log \frac{p(x,y)}{p(x)p(r(y))} \quad (25.2)
\]

\[
= \max_r (x|y) \sum_{x,y} p(x,y) \log \frac{p(x|y)}{p(y)p(x)} \quad (25.3)
\]

Therefore, we have that for any \(r(y) \) and \(r(x|y) \), we have that:

\[
\sum_{x,y} p(x,y) \log \frac{p(x|y)}{p(y)p(x)} \leq \sum_{x,y} p(x,y) \log \frac{p(x,y)}{p(x)p(r(y))} \quad (25.4)
\]
Another way of seeing these theorems is that we have:

\[I(X; Y) \]
Projections and I-maps

Another way of seeing these theorems is that we have:

\[I(X; Y) = \sum_{x,y} p(x, y) \log \frac{p(x, y)}{p(x)p(y)} \]

(25.1)
Another way of seeing these theorems is that we have:

\[I(X; Y) = \sum_{x,y} p(x, y) \log \frac{p(x, y)}{p(x)p(y)} \]
(25.1)

\[= \min_r \sum_{x,y} p(x, y) \log \frac{p(x, y)}{p(x)r(y)} \]
(25.2)
Another way of seeing these theorems is that we have:

\[
I(X; Y) = \sum_{x,y} p(x, y) \log \frac{p(x, y)}{p(x)p(y)} \tag{25.1}
\]

\[
= \min_{r(y)} \sum_{x,y} p(x, y) \log \frac{p(x, y)}{p(x)r(y)} \tag{25.2}
\]

\[
= \max_{r(x|y)} \sum_{x,y} p(x, y) \log \frac{r(x|y)p(y)}{p(x)p(y)} \tag{25.3}
\]
Another way of seeing these theorems is that we have:

\[I(X; Y) = \sum_{x,y} p(x, y) \log \frac{p(x, y)}{p(x)p(y)} \]

\[= \min_{r(y)} \sum_{x,y} p(x, y) \log \frac{p(x, y)}{p(x)r(y)} \]

\[= \max_{r(x|y)} \sum_{x,y} p(x, y) \log \frac{r(x|y)p(y)}{p(x)p(y)} \]

Therefore, we have that for any \(r(y) \) and \(r(x|y) \), we have that:

\[\sum_{x,y} p(x, y) \log \frac{r(x|y)p(y)}{p(x)p(y)} \leq \sum_{x,y} p(x, y) \log \frac{p(x, y)}{p(x)r(y)} \]
proof of part 2 (part 1 is similar).

\[
\sum_{x,y} p(x, y) \log \frac{r^*(x|y)}{p(x)} - \sum_{x,y} p(x, y) \log \frac{r(x|y)}{p(x)} \tag{25.5}
\]

\[
\geq 0 \tag{25.9}
\]
proof of part 2 (part 1 is similar).

\[
\sum_{x,y} p(x, y) \log \frac{r^*(x|y)}{p(x)} - \sum_{x,y} p(x, y) \log \frac{r(x|y)}{p(x)}
\]
(25.5)

\[
= \sum_{x,y} p(x, y) \log \frac{r^*(x|y)}{r(x|y)}
\]
(25.6)

\[
\geq 0
\]
(25.9)
proof of part 2 (part 1 is similar).

\[
\sum_{x,y} p(x, y) \log \frac{r^*(x|y)}{p(x)} - \sum_{x,y} p(x, y) \log \frac{r(x|y)}{p(x)}
\]

(25.5)

\[
= \sum_{x,y} p(x, y) \log \frac{r^*(x|y)}{r(x|y)}
\]

(25.6)

\[
= \sum_{x,y} r^*(x|y)p(y) \log \frac{r^*(x|y)}{r(x|y)}
\]

(25.7)

\[
\sum_{x,y} r^*(x|y)p(y) \log \frac{r^*(x|y)}{r(x|y)} \geq 0
\]

(25.9)
proof of part 2 (part 1 is similar).

\[\sum_{x,y} p(x, y) \log \frac{r^*(x|y)}{p(x)} - \sum_{x,y} p(x, y) \log \frac{r(x|y)}{p(x)} \]
\[= \sum_{x,y} p(x, y) \log \frac{r^*(x|y)}{r(x|y)} \]
\[= \sum_{x,y} r^*(x|y)p(y) \log \frac{r^*(x|y)}{r(x|y)} \]
\[= D(r^*(x|y) || r(x|y)) \]
proof of part 2 (part 1 is similar).

\[
\sum_{x,y} p(x, y) \log \frac{r^*(x|y)}{p(x)} - \sum_{x,y} p(x, y) \log \frac{r(x|y)}{p(x)} = \sum_{x,y} p(x, y) \log \frac{r^*(x|y)}{r(x|y)}
\]

\[= \sum_{x,y} r^*(x|y)p(y) \log \frac{r^*(x|y)}{r(x|y)}\]

\[= D(r^*(x|y)||r(x|y))\]

\[\geq 0\]
proof of part 2 (part 1 is similar).

\[
\sum_{x,y} p(x, y) \log \frac{r^*(x|y)}{p(x)} - \sum_{x,y} p(x, y) \log \frac{r(x|y)}{p(x)} \tag{25.5}
\]

\[
= \sum_{x,y} p(x, y) \log \frac{r^*(x|y)}{r(x|y)} \tag{25.6}
\]

\[
= \sum_{x,y} r^*(x|y) p(y) \log \frac{r^*(x|y)}{r(x|y)} \tag{25.7}
\]

\[
= D(r^*(x|y) || r(x|y)) \tag{25.8}
\]

\[
\geq 0 \tag{25.9}
\]

with equality when \(r^*(x|y) = r(x|y) \).
Back to rate distortion

Therefore, we can write the rate-distortion function as

$$R(D)$$
Therefore, we can write the rate-distortion function as

\[
R(D) = \min_{q(\hat{x}|x): \sum_x \hat{x} p(x)q(\hat{x}|x)d(x,\hat{x}) \leq D} I(X; \hat{X})
\]
(25.10)
Therefore, we can write the rate-distortion function as

\[R(D) = \min_{q(\hat{x}|x): \sum_x p(x)q(\hat{x}|x)d(x,\hat{x}) \leq D} I(X; \hat{X}) \] (25.10)

\[= \min_{q(\hat{x}|x): \sum_x p(x)q(\hat{x}|x)d(x,\hat{x}) \leq D} \sum_x p(x)q(\hat{x}|x) \log \frac{q(\hat{x}|x)}{q(\hat{x})} \] (25.11)
Therefore, we can write the rate-distortion function as

\[R(D) = \min_{q(\hat{x}|x) : \sum_{x, \hat{x}} p(x) q(\hat{x}|x) d(x, \hat{x}) \leq D} I(X; \hat{X}) \]

(25.10)

\[= \min_{q(\hat{x}|x) : \sum_{x, \hat{x}} p(x) q(\hat{x}|x) d(x, \hat{x}) \leq D} \sum_{x, \hat{x}} p(x) q(\hat{x}|x) \log \frac{q(\hat{x}|x)}{q(\hat{x})} \]

(25.11)
Therefore, we can write the rate-distortion function as

\[
R(D) = \min_{q(\hat{x}|x): \sum_{x,\hat{x}} p(x)q(\hat{x}|x)d(x,\hat{x}) \leq D} I(X; \hat{X})
\]

(25.10)

\[
= \min_{q(\hat{x}|x): \sum_{x,\hat{x}} p(x)q(\hat{x}|x)d(x,\hat{x}) \leq D} \sum_{x,\hat{x}} p(x)q(\hat{x}|x) \log \frac{q(\hat{x}|x)}{q(\hat{x})}
\]

(25.11)

\[
= \min_{q(\hat{x}|x): \sum_{x,\hat{x}} p(x)q(\hat{x}|x)d(x,\hat{x}) \leq D} \left[\min_{r(\hat{x})} \sum_{x,\hat{x}} p(x)q(\hat{x}|x) \log \frac{q(\hat{x}|x)}{r(\hat{x})} \right]
\]

\[
= \min_{r(\hat{x})} \left[\min_{q(\hat{x}|x): \sum_{x,\hat{x}} p(x)q(\hat{x}|x)d(x,\hat{x}) \leq D} \sum_{x,\hat{x}} p(x)q(\hat{x}|x) \log \frac{q(\hat{x}|x)}{r(\hat{x})} \right]
\]
Therefore, we can write the rate-distortion function as

\[R(D) = \min_{q(\hat{x}|x) : \sum_{x, \hat{x}} p(x) q(\hat{x}|x) d(x, \hat{x}) \leq D} I(X; \hat{X}) \]

(25.10)

\[= \min_{q(\hat{x}|x) : \sum_{x, \hat{x}} p(x) q(\hat{x}|x) d(x, \hat{x}) \leq D} \sum_{x, \hat{x}} p(x) q(\hat{x}|x) \log \frac{q(\hat{x}|x)}{q(\hat{\hat{x}})} \]

(25.11)

\[= \min_{r(\hat{x})} \left[\min_{q(\hat{x}|x) : \sum_{x, \hat{x}} p(x) q(\hat{x}|x) d(x, \hat{x}) \leq D} \sum_{x, \hat{x}} p(x) q(\hat{x}|x) \log \frac{q(\hat{x}|x)}{r(\hat{x})} \right] \]

\[= \min_{r(\hat{x})} \left[\min_{q(\hat{x}|x) : \sum_{x, \hat{x}} p(x) q(\hat{x}|x) d(x, \hat{x}) \leq D} \left\{ \sum_{x, \hat{x}} p(x) q(\hat{x}|x) \log \frac{q(\hat{x}|x)}{r(\hat{x})} \right\} \right] \]
The last switch of minimizations can be done since:

1. $-\log r(\hat{x})$ is convex in $r(\hat{x})$ for fixed other parameters
2. $x \log x$ is convex in x
3. minimization over convex sets of the form $Ap \leq D$.
The last switch of minimizations can be done since:

1. $-\log r(\hat{x})$ is convex in $r(\hat{x})$ for fixed other parameters
2. $x \log x$ is convex in x
3. minimization over convex sets of the form $Ap \leq D$.

All of which allows us to swap the mins.
The last switch of minimizations can be done since:

1. $-\log r(\hat{x})$ is convex in $r(\hat{x})$ for fixed other parameters
2. $x \log x$ is convex in x
3. minimization over convex sets of the form $Ap \leq D$.

All of which allows us to swap the mins.

This then gives $R(D)$ in the alternating minimization form:

$$R(D) = \min_{p \in A} \min_{q \in B} D(p||q) = \min_{q \in B} \min_{p \in A} D(p||q)$$ (25.12)

where

$$A = \left\{ p(x, \hat{x}) : p(x, \hat{x}) = q(\hat{x}|x)p(x) \text{ s.t. } \sum_{x,y} p(x, \hat{x})d(x, \hat{x}) \leq D \right\}$$ (25.13)

$$B = \left\{ q(x, \hat{x}) : q(x, \hat{x}) = p(x)r(\hat{x}) \text{ for arbitrary } r(\hat{x}) \right\}$$ (25.14)
Computing $R(D)$

- So, to compute $R(D)$ at some point $s = -\lambda$, start with some arbitrary $r(\hat{x})$, and find the corresponding $q(\hat{x}|x)$.

\[
q(\hat{x}|x) = R(\hat{x}) e^{-\lambda d(x, \hat{x})} \sum \hat{y} r(\hat{y}) e^{-\lambda d(x, \hat{y})} \tag{25.15}
\]

Once we have $q(\hat{x}) = q(\hat{x}|x) p(x)$, we find corresponding next $r(\hat{x})$ from the projection

\[
r(\hat{x}) = \sum x p(x) q(\hat{x}|x) \tag{25.16}
\]
So, to compute $R(D)$ at some point $s = -\lambda$, start with some arbitrary $r(\hat{x})$, and find the corresponding $q(\hat{x}|x)$.

From earlier, we have that

$$q(\hat{x}|x) = \frac{r(\hat{x})e^{-\lambda d(x,\hat{x})}}{\sum_{\hat{y}} r(\hat{y})e^{-\lambda d(x,\hat{y})}}$$ \hspace{1cm} (25.15)
Computing $R(D)$

So, to compute $R(D)$ at some point $s = -\lambda$, start with some arbitrary $r(\hat{x})$, and find the corresponding $q(\hat{x}|x)$.

From earlier, we have that

$$q(\hat{x}|x) = \frac{r(\hat{x})e^{-\lambda d(x,\hat{x})}}{\sum_{\hat{y}} r(\hat{y})e^{-\lambda d(x,\hat{y})}}$$

(25.15)

Once we have $q(\hat{x}) = q(\hat{x}|x)p(x)$, we find corresponding next $r(\hat{x})$ from the projection

$$r(\hat{x}) = \sum_{x} p(x)q(\hat{x}|x)$$

(25.16)
Computing $R(D)$

- So, to compute $R(D)$ at some point $s = -\lambda$, start with some arbitrary $r(\hat{x})$, and find the corresponding $q(\hat{x}|x)$.

- From earlier, we have that

$$q(\hat{x}|x) = \frac{r(\hat{x})e^{-\lambda d(x,\hat{x})}}{\sum_{\hat{y}} r(\hat{y})e^{-\lambda d(x,\hat{y})}} \quad (25.15)$$

- Once we have $q(\hat{x}) = q(\hat{x}|x)p(x)$, we find corresponding next $r(\hat{x})$ from the projection

$$r(\hat{x}) = \sum_{x} p(x)q(\hat{x}|x) \quad (25.16)$$

- We repeat this alternating projection/minimization procedure until convergence.
Computing $R(D)$

- So, to compute $R(D)$ at some point $s = -\lambda$, start with some arbitrary $r(\hat{x})$, and find the corresponding $q(\hat{x}|x)$.

- From earlier, we have that

$$ q(\hat{x}|x) = \frac{r(\hat{x})e^{-\lambda d(x,\hat{x})}}{\sum_{\hat{y}} r(\hat{y})e^{-\lambda d(x,\hat{y})}} $$ (25.15)

- Once we have $q(\hat{x}) = q(\hat{x}|x)p(x)$, we find corresponding **next** $r(\hat{x})$ from the projection

$$ r(\hat{x}) = \sum_{x} p(x)q(\hat{x}|x) $$ (25.16)

- We repeat this alternating projection/minimization procedure until convergence.

- **This will converge to** $R(D)$ **at** s.
Computing Channel Capacity

- Recall channel capacity, where we have a noisy channel, a capacity C, and Shannon’s theorem saying we can only communicate with vanishingly small probability of error if $R < C$.

\[
C = \max_q \left(\sum_{x,y} r(x) p(y|x) \log q(x|y) r(y) \right)
\]

We guess, starting $r(x)$ and then iterate the following two equations:

\[
q(x|y) = r(x) p(y|x) \sum_x r(x) p(y|x)
\]

\[
r(x) = \prod_y \left[q(x|y) \right] p(y|x) \sum_x \prod_y \left[q(x|y) \right] p(y|x)
\]
Computing Channel Capacity

- Recall channel capacity, where we have a noisy channel, a capacity C, and Shannon’s theorem saying we can only communicate with vanishingly small probability of error if $R < C$.

- In this case, we have:

$$C = \max_{q(x|y)} \max_{r(x)} \sum_{x,y} r(x)p(y|x) \log \frac{q(x|y)}{r(y)}$$

(25.17)
Computing Channel Capacity

- Recall channel capacity, where we have a noisy channel, a capacity \(C \), and Shannon’s theorem saying we can only communicate with vanishingly small probability of error if \(R < C \).

- In this case, we have:

\[
C = \max_{q(x|y)} \max_{r(x)} \sum_{x,y} r(x)p(y|x) \log \frac{q(x|y)}{r(y)}
\]

(25.17)

- We guess, starting \(r(x) \) and then iterate the following two equations:

\[
q(x|y) = \frac{r(x)p(y|x)}{\sum_x r(x)p(y|x)}, \quad r(x) = \frac{\prod_y [q(x|y)p(y|x)]}{\sum_x \prod_y [q(x|y)p(y|x)]}
\]

(25.18)
Alternating Minimization: Overall Idea

- Let \mathcal{P}, \mathcal{Q} be convex sets of finite measures, meaning for each $P \in \mathcal{P}$, $\sum_x P(x) = 1$, and for all $x \in \mathcal{X}$, $P(x) \geq 0$
Alternating Minimization: Overall Idea

- Let \mathcal{P}, \mathcal{Q} be convex sets of finite measures, meaning for each $P \in \mathcal{P}$, $\sum_x P(x) = 1$, and for all $x \in \mathcal{X}$, $P(x) \geq 0$
- Define $P_n \in \mathcal{P}$ arbitrarily.
Alternating Minimization: Overall Idea

- Let \mathcal{P}, \mathcal{Q} be convex sets of finite measures, meaning for each $P \in \mathcal{P}$, $\sum_x P(x) = 1$, and for all $x \in \mathcal{X}$, $P(x) \geq 0$
- Define $P_n \in \mathcal{P}$ arbitrarily.
- Define $Q_n \in \text{argmin}_{Q \in \mathcal{Q}} D(P_n || Q)$.
Alternating Minimization: Overall Idea

- Let \mathcal{P}, Q be convex sets of finite measures, meaning for each $P \in \mathcal{P}$, $\sum_x P(x) = 1$, and for all $x \in \mathcal{X}$, $P(x) \geq 0$
- Define $P_n \in \mathcal{P}$ arbitrarily.
- Define $Q_n \in \text{argmin}_{Q \in \mathcal{Q}} D(P_n || Q)$.
- That is, we have the following procedure:

$$Q_n \in \text{argmin}_{Q \in \mathcal{Q}} D(P_n || Q)$$ \hspace{1cm} (25.19)

$$P_{n+1} \in \text{argmin}_{P \in \mathcal{P}} D(P || Q_n)$$ \hspace{1cm} (25.20)
Alternating Minimization: Overall Idea

- Let P, Q be convex sets of finite measures, meaning for each $P \in P$, $\sum_x P(x) = 1$, and for all $x \in X$, $P(x) \geq 0$
- Define $P_n \in P$ arbitrarily.
- Define $Q_n \in \text{argmin}_{Q \in Q} D(P_n \| Q)$.
- That is, we have the following procedure:

$$Q_n \in \text{argmin}_{Q \in Q} D(P_n \| Q) \quad (25.19)$$

$$P_{n+1} \in \text{argmin}_{P \in P} D(P \| Q_n) \quad (25.20)$$

- Then the result we will get is that:

$$D(P_n \| Q_n) \rightarrow \inf_{(P,Q) \in (P_0,Q)} D(P \| Q) = D_{\text{min}} \quad (25.21)$$

where $P_0 = \{ P \in P : D(P \| Q_n) < \infty \text{ for some } n \}$ and $P_n \rightarrow P^*$, $Q_n \rightarrow Q^*$ sometimes as well, where $D(P^*, Q^*) = D_{\text{min}}$.
Alternating Minimization: Overall Idea

- Let \mathcal{P}, \mathcal{Q} be convex sets of finite measures, meaning for each $P \in \mathcal{P}$, $\sum_x P(x) = 1$, and for all $x \in \mathcal{X}$, $P(x) \geq 0$.
- Define $P_n \in \mathcal{P}$ arbitrarily.
- Define $Q_n \in \arg\min_{Q \in \mathcal{Q}} D(P_n \| Q)$.
- That is, we have the following procedure:

$$Q_n \in \arg\min_{Q \in \mathcal{Q}} D(P_n \| Q) \quad (25.19)$$

$$P_{n+1} \in \arg\min_{P \in \mathcal{P}} D(P \| Q_n) \quad (25.20)$$

- Then the result we will get is that:

$$D(P_n \| Q_n) \to \inf_{(P,Q) \in (\mathcal{P}_0, \mathcal{Q})} D(P \| Q) = D_{\text{min}} \quad (25.21)$$

where $\mathcal{P}_0 = \{ P \in \mathcal{P} : D(P \| Q_n) < \infty \text{ for some } n \}$ and $P_n \to P^*$, $Q_n \to Q^*$ sometimes as well, where $D(P^*, Q^*) = D_{\text{min}}$.

- \mathcal{P}_0 are the entries of \mathcal{P} that we care about.
Alternating Minimization: Overall Idea

- This process has a geometric flavor, since it corresponds to alternating “projections” based on treating KL as a generalized “distance” in some odd sense.
Alternating Minimization: Overall Idea

- This process has a geometric flavor, since it corresponds to alternating “projections” based on treating KL as a generalized “distance” in some odd sense.
- It also generalizes (and offers guarantees for) a number of problems, including:
 - Maximum likelihood estimation for mixtures, hidden Markov models, and other graphical models (i.e. the expectation-maximization or EM algorithm).
 - Computing the rate-distortion function (Blahut-Arimoto algorithm).
 - Computing the channel capacity function.
 - Optimal investment portfolios.
 - Many semi-supervised learning objectives in machine learning (including forms of “label propagation”, “measure propagation”, etc.).
Alternating Minimization: Overall Idea

- This process has a geometric flavor, since it corresponds to alternating “projections” based on treating KL as a generalized “distance” in some odd sense.

- It also generalizes (and offers guarantees for) a number of problems, including:
 - Maximum likelihood estimation for mixtures, hidden Markov models, and other graphical models (i.e. the expectation-maximization or EM algorithm).
Alternating Minimization: Overall Idea

- This process has a geometric flavor, since it corresponds to alternating “projections” based on treating KL as a generalized “distance” in some odd sense.
- It also generalizes (and offers guarantees for) a number of problems, including:
 - Maximum likelihood estimation for mixtures, hidden Markov models, and other graphical models (i.e. the expectation-maximization or EM algorithm).
 - computing rate-distortion function (Blahut-Arimoto algorithm)
Alternating Minimization: Overall Idea

- This process has a geometric flavor, since it corresponds to alternating “projections” based on treating KL as a generalized “distance” in some odd sense.
- It also generalizes (and offers guarantees for) a number of problems, including:
 - Maximum likelihood estimation for mixtures, hidden Markov models, and other graphical models (i.e. the expectation-maximization or EM algorithm).
 - Computing rate-distortion function (Blahut-Arimoto algorithm)
 - Computing the channel capacity function.
Alternating Minimization: Overall Idea

- This process has a geometric flavor, since it corresponds to alternating “projections” based on treating KL as a generalized “distance” in some odd sense.

- It also generalizes (and offers guarantees for) a number of problems, including:
 - Maximum likelihood estimation for mixtures, hidden Markov models, and other graphical models (i.e. the expectation-maximization or EM algorithm).
 - computing rate-distortion function (Blahut-Arimoto algorithm)
 - computing the channel capacity function.
 - optimal investment portfolios
Alternating Minimization: Overall Idea

- This process has a geometric flavor, since it corresponds to alternating “projections” based on treating KL as a generalized “distance” in some odd sense.

- It also generalizes (and offers guarantees for) a number of problems, including:
 - Maximum likelihood estimation for mixtures, hidden Markov models, and other graphical models (i.e. the expectation-maximization or EM algorithm).
 - Computing rate-distortion function (Blahut-Arimoto algorithm)
 - Computing the channel capacity function.
 - Optimal investment portfolios
 - Many semi-supervised learning objectives in machine learning (including forms of “label propagation”, “measure propagation”, etc.).
Alternating Minimization: Overall Idea

- This process has a geometric flavor, since it corresponds to alternating “projections” based on treating KL as a generalized “distance” in some odd sense.

- It also generalizes (and offers guarantees for) a number of problems, including:
 - Maximum likelihood estimation for mixtures, hidden Markov models, and other graphical models (i.e. the expectation-maximization or EM algorithm).
 - Computing rate-distortion function (Blahut-Arimoto algorithm).
 - Computing the channel capacity function.
 - Optimal investment portfolios.
 - Many semi-supervised learning objectives in machine learning (including forms of “label propagation”, “measure propagation”, etc.).

- The application depends on the quasi-distance $d(P, Q)$ where $d : \mathcal{P} \times \mathcal{Q} \rightarrow \mathbb{R} \cup \{+\infty\}$ which need not be KL-divergence.
It is typical to be formal about such terms (recall from Lecture 3).

- Let X be a set. A function $d : X \times X \rightarrow \mathbb{R}$ is called a distance on X if, $\forall x, y \in X$, we have $d(x, y) \geq 0$ (non-negativity), $d(x, y) = d(y, x)$ (symmetry), and $d(x, x) = 0$ (reflexivity).
It is typical to be formal about such terms (recall from Lecture 3).

- Let X be a set. A function $d : X \times X \to \mathbb{R}$ is called a **distance** on X if, $\forall x, y \in X$, we have $d(x, y) \geq 0$ (non-negativity), $d(x, y) = d(y, x)$ (symmetry), and $d(x, x) = 0$ (reflexivity).

- Let X be a set. A function $d : X \times X \to \mathbb{R}$ is called a **quasi-distance** on X if it is non-negative and reflexive.
Distance/Metric/Etc.

It is typical to be formal about such terms (recall from Lecture 3).

- Let X be a set. A function $d : X \times X \to \mathbb{R}$ is called a **distance** on X if, $\forall x, y \in X$, we have $d(x, y) \geq 0$ (non-negativity), $d(x, y) = d(y, x)$ (symmetry), and $d(x, x) = 0$ (reflexivity).

- Let X be a set. A function $d : X \times X \to \mathbb{R}$ is called a **quasi-distance** on X if it is non-negative and reflexive.

- Let X be a set. A function $d : X \times X \to \mathbb{R}$ is called a **semi-metric** on X if it is non-negative, symmetric, reflexive, and if $d(x, y) \leq d(x, z) + d(z, y)$ for all $x, y, z \in X$ (triangular inequality).
It is typical to be formal about such terms (recall from Lecture 3).

- Let X be a set. A function $d : X \times X \rightarrow \mathbb{R}$ is called a **distance** on X if, $\forall x, y \in X$, we have $d(x, y) \geq 0$ (non-negativity), $d(x, y) = d(y, x)$ (symmetry), and $d(x, x) = 0$ (reflexivity).

- Let X be a set. A function $d : X \times X \rightarrow \mathbb{R}$ is called a **quasi-distance** on X if it is non-negative and reflexive.

- Let X be a set. A function $d : X \times X \rightarrow \mathbb{R}$ is called a **semi-metric** on X if it is non-negative, symmetric, reflexive, and if $d(x, y) \leq d(x, z) + d(z, y)$ for all $x, y, z \in X$ (triangular inequality).

- Let X be a set. A function $d : X \times X \rightarrow \mathbb{R}$ is called a **metric** on X if it is a semi-metric and if $d(x, y) = 0$ iff $x = y$ (identity of indiscernibles).
It is typical to be formal about such terms (recall from Lecture 3).

- Let X be a set. A function $d : X \times X \to \mathbb{R}$ is called a distance on X if, $\forall x, y \in X$, we have $d(x, y) \geq 0$ (non-negativity), $d(x, y) = d(y, x)$ (symmetry), and $d(x, x) = 0$ (reflexivity).
- Let X be a set. A function $d : X \times X \to \mathbb{R}$ is called a quasi-distance on X if it is non-negative and reflexive.
- Let X be a set. A function $d : X \times X \to \mathbb{R}$ is called a semi-metric on X if it is non-negative, symmetric, reflexive, and if $d(x, y) \leq d(x, z) + d(z, y)$ for all $x, y, z \in X$ (triangular inequality).
- Let X be a set. A function $d : X \times X \to \mathbb{R}$ is called a metric on X if it is a semi-metric and if $d(x, y) = 0$ iff $x = y$ (identity of indiscernibles).
- Hence, the KL-divergence is like a quasi-distance that also satisfies identity of indiscernibles. A reasonable name for this is a “divergence”
Properties of d

- Let $d(P, Q)$ be a half extended-real valued function. That is, for $P \in \mathcal{P}$, $Q \in \mathcal{Q}$, we have $d(P, Q) > -\infty$ (we exclude $-\infty$ but allow ∞).
Properties of d

- Let $d(P, Q)$ be a half extended-real valued function. That is, for $P \in \mathcal{P}$, $Q \in \mathcal{Q}$, we have $d(P, Q) > -\infty$ (we exclude $-\infty$ but allow ∞).

- Also, $d(P, Q') = \min_{Q \in \mathcal{Q}} d(P, Q) < \infty$. This minimization is denoted as $P \overset{1}{\rightarrow} Q'$ where we are holding P fixed (“1” indicates that P, the first argument of d, is being held fixed) and minimizing the second argument down to Q'.

Prof. Jeff Bilmes

Properties of d

- Let $d(P, Q)$ be a half extended-real valued function. That is, for $P \in \mathcal{P}$, $Q \in \mathcal{Q}$, we have $d(P, Q) > -\infty$ (we exclude $-\infty$ but allow ∞).

- Also, $d(P, Q') = \min_{Q \in \mathcal{Q}} d(P, Q) < \infty$. This minimization is denoted as $P \overset{1}{\rightarrow} Q'$ where we are holding P fixed ("1" indicates that P, the first argument of d, is being held fixed) and minimizing the second argument down to Q'.

- Similarly, $d(P', Q) = \min_{P \in \mathcal{P}} d(P, Q) < \infty$ is denoted $Q \overset{2}{\rightarrow} P'$, indicating we minimize over P, holding the 2nd argument Q fixed.
Let \(d(P, Q) \) be a half extended-real valued function. That is, for \(P \in \mathcal{P}, Q \in \mathcal{Q} \), we have \(d(P, Q) > -\infty \) (we exclude \(-\infty \) but allow \(\infty \)).

Also, \(d(P, Q') = \min_{Q \in \mathcal{Q}} d(P, Q) < \infty \). This minimization is denoted as \(P \xrightarrow{1} Q' \) where we are holding \(P \) fixed ("1" indicates that \(P \), the first argument of \(d \), is being held fixed) and minimizing the second argument down to \(Q' \).

Similarly, \(d(P', Q) = \min_{P \in \mathcal{P}} d(P, Q) < \infty \) is denoted \(Q \xrightarrow{2} P' \), indicating we minimize over \(P \), holding the 2nd argument \(Q \) fixed.

Sequences obtained by alternating minimization \(\{(P_n, Q_n)\}_{n=0}^{\infty} \) as:

\[
P_0 \xrightarrow{1} Q_0 \xrightarrow{2} P_1 \xrightarrow{1} Q_1 \xrightarrow{2} P_2 \xrightarrow{1} Q_2 \xrightarrow{2} P_3 \xrightarrow{1} Q_3 \xrightarrow{2} \cdots \quad (25.22)
\]

where we start arbitrarily with \(P_0 \).
Properties of d

- Let $d(P, Q)$ be a half extended-real valued function. That is, for $P \in \mathcal{P}, Q \in \mathcal{Q}$, we have $d(P, Q) > -\infty$ (we exclude $-\infty$ but allow ∞).

- Also, $d(P, Q') = \min_{Q \in \mathcal{Q}} d(P, Q) < \infty$. This minimization is denoted as $P \xrightarrow{1} Q'$ where we are holding P fixed (“1” indicates that P, the first argument of d, is being held fixed) and minimizing the second argument down to Q'.

- Similarly, $d(P', Q) = \min_{P \in \mathcal{P}} d(P, Q) < \infty$ is denoted $Q \xrightarrow{2} P'$, indicating we minimize over P, holding the 2nd argument Q fixed.

- Sequences obtained by alternating minimization $\{(P_n, Q_n)\}_{n=0}^{\infty}$ as:

\[
P_0 \xrightarrow{1} Q_0 \xrightarrow{2} P_1 \xrightarrow{1} Q_1 \xrightarrow{2} P_2 \xrightarrow{1} Q_2 \xrightarrow{2} P_3 \xrightarrow{1} Q_3 \xrightarrow{2} \cdots \tag{25.22}
\]

where we start arbitrarily with P_0.

- Goal: sufficient conditions for the convergence of the alternating minimization procedure.
Definition 25.4.1 (Five Points Property (5PP))

For a \(P \in \mathcal{P} \), the quasi-distance \(d : \mathcal{P} \times \mathcal{Q} \rightarrow \mathbb{R} \cup \{+\infty\} \) satisfies the five points property at \(P \in \mathcal{P} \) if: \(\forall Q \in \mathcal{Q}, \forall Q_0 \in \mathcal{Q} \), we have:

\[
d(P, Q) + d(P, Q_0) \geq d(P, Q_1) + d(P_1, Q_1)
\]

whenever \(Q_0 \xrightarrow{2} P_1 \xrightarrow{1} Q_1 \).
Definition 25.4.1 (Five Points Property (5PP))

For a $P \in \mathcal{P}$, the quasi-distance $d : \mathcal{P} \times \mathcal{Q} \to \mathbb{R} \cup \{+\infty\}$ satisfies the five points property at $P \in \mathcal{P}$ if: $\forall Q \in \mathcal{Q}, \forall Q_0 \in \mathcal{Q}$, we have:

$$d(P, Q) + d(P, Q_0) \geq d(P, Q_1) + d(P_1, Q_1)$$

(25.23)

whenever $Q_0 \xrightarrow{2} P_1 \xrightarrow{1} Q_1$. We say $d(\cdot, \cdot)$ satisfies 5PP if it satisfies 5PP for all $P \in \mathcal{P}$.

Note: this is a property of a quasi-distance (or divergence) across sets \mathcal{P} and \mathcal{Q}. It is a definition on sets of 5 points! (obviously). Compare triangle inequality: We have one set, say, \mathcal{P}. Triangle inequality would require that for all triples of points $P_1, P_2, P_3 \in \mathcal{P}$,

$$d(P_1, P_2) + d(P_2, P_3) \geq d(P_1, P_3),$$

where in this case $d : \mathcal{P} \times \mathcal{P} \to \mathbb{R} +$.

Definition 25.4.1 (Five Points Property (5PP))

For a $P \in \mathcal{P}$, the quasi-distance $d : \mathcal{P} \times \mathcal{Q} \rightarrow \mathbb{R} \cup \{+\infty\}$ satisfies the five points property at $P \in \mathcal{P}$ if: $\forall Q \in \mathcal{Q}, \forall Q_0 \in \mathcal{Q}$, we have:

$$d(P, Q) + d(P, Q_0) \geq d(P, Q_1) + d(P_1, Q_1) \quad (25.23)$$

whenever $Q_0 \xrightarrow{2} P_1 \xrightarrow{1} Q_1$. We say $d(\cdot, \cdot)$ satisfies 5PP if it satisfies 5PP for all $P \in \mathcal{P}$.

- Note: this is a property of a quasi-distance (or divergence) across sets \mathcal{P} and \mathcal{Q}.
Definition 25.4.1 (Five Points Property (5PP))

For a $P \in \mathcal{P}$, the quasi-distance $d : \mathcal{P} \times \mathcal{Q} \rightarrow \mathbb{R} \cup \{+\infty\}$ satisfies the five points property at $P \in \mathcal{P}$ if: $\forall Q \in \mathcal{Q}, \forall Q_0 \in \mathcal{Q}$, we have:

$$d(P, Q) + d(P, Q_0) \geq d(P, Q_1) + d(P_1, Q_1)$$ \hspace{1cm} (25.23)

whenever $Q_0 \rightarrow P_1 \rightarrow Q_1$. We say $d(\cdot, \cdot)$ satisfies 5PP if it satisfies 5PP for all $P \in \mathcal{P}$.

- Note: this is a property of a quasi-distance (or divergence) across sets \mathcal{P} and \mathcal{Q}.
- It is a definition on sets of 5 points! (obviously 😊).
Definition 25.4.1 (Five Points Property (5PP))

For a $P \in \mathcal{P}$, the quasi-distance $d : \mathcal{P} \times \mathcal{Q} \to \mathbb{R} \cup \{+\infty\}$ satisfies the five points property at $P \in \mathcal{P}$ if: $\forall Q \in \mathcal{Q}, \forall Q_0 \in \mathcal{Q}$, we have:

$$d(P, Q) + d(P, Q_0) \geq d(P, Q_1) + d(P_1, Q_1)$$ \hspace{1cm} (25.23)

whenever $Q_0 \xrightarrow{2} P_1 \xrightarrow{1} Q_1$. We say $d(\cdot, \cdot)$ satisfies 5PP if it satisfies 5PP for all $P \in \mathcal{P}$.

- Note: this is a property of a quasi-distance (or divergence) across sets \mathcal{P} and \mathcal{Q}.
- It is a definition on sets of 5 points! (obviously 😊).
- Compare triangle inequality: We have one set, say, \mathcal{P}. Triangle inequality would require that for all triples of points $P_1, P_2, P_3 \in \mathcal{P}$, $d(P_1, P_2) + d(P_2, P_3) \geq d(P_1, P_3)$, where in this case $d : \mathcal{P} \times \mathcal{P} \to \mathbb{R}_+$.
Five Points Property

\[P \in \mathcal{P}, \quad \forall Q \in \mathcal{Q}, Q_0 \in \mathcal{Q} \]

\[d(P, Q) + d(P, Q_0) \geq d(P, Q_1) + d(P_1, Q_1) \]

\[P_1 \in \arg\min_{P \in \mathcal{P}} d(P, Q_0) \]

\[Q_1 \in \arg\min_{Q \in \mathcal{Q}} d(P_1, Q) \]
Properties

We will prove that if five points property holds (either $\forall P \in \mathcal{P}$, or some other conditions that are specified later), then

$$\lim_{n \to \infty} d(P_n, Q_n) = \inf_{P \in \mathcal{P}, Q \in \mathcal{Q}} d(P, Q) = \min_d$$

(25.24)

as long as

$$\min_d = \inf_{P \in \mathcal{P}_0, Q \in \mathcal{Q}} d(P, Q)$$

(25.25)

where

$$\mathcal{P}_0 = \{ P : P \in \mathcal{P}, d(P, Q_n) < \infty \text{ for some } n \}$$

(25.26)
We will prove that if five points property holds (either $\forall P \in \mathcal{P}$, or some other conditions that are specified later), then

$$
\lim_{n \to \infty} d(P_n, Q_n) = \inf_{P \in \mathcal{P}, Q \in \mathcal{Q}} d(P, Q) = d_{\min} \quad (25.24)
$$

as long as

$$
d_{\min} = \inf_{P \in \mathcal{P}_0, Q \in \mathcal{Q}} d(P, Q) \quad (25.25)
$$

where

$$
\mathcal{P}_0 = \{ P : P \in \mathcal{P}, d(P, Q_n) < \infty \text{ for some } n \} \quad (25.26)
$$

Note, \mathcal{P}_0 does depend on the sequence, and $\mathcal{P}_0 = \mathcal{P}$ if d is finite valued.
Definitions

- We define, for $A \subseteq \mathcal{P}$ and $B \subseteq \mathcal{Q}$,

$$
d(A, B) \triangleq \inf_{P \in A, Q \in B} d(P, Q)
$$

(25.27)

Since $d(P, Q) \in \mathbb{R} \cup \{+\infty\}$, $d(A, B)$ does not take the value $-\infty$.
Definitions

We define, for $A \subseteq \mathcal{P}$ and $B \subseteq \mathcal{Q}$,

$$d(A, B) \triangleq \inf_{P \in A, Q \in B} d(P, Q) \quad (25.27)$$

Since $d(P, Q) \in \mathbb{R} \cup \{+\infty\}$, $d(A, B)$ does not take the value $-\infty$.

Lemma 25.4.2

Let $\{(P_n, Q_n)\}_{n=0}^{\infty}$ be sequences (not necessarily generated via alternating minimization). Then

$$d(P_n, Q_n) \geq d(\mathcal{P}_0, Q) \quad \forall n \quad (25.28)$$
Definitions

- We define, for $A \subseteq \mathcal{P}$ and $B \subseteq \mathcal{Q}$,

$$d(A, B) \triangleq \inf_{P \in A, Q \in B} d(P, Q) \tag{25.27}$$

Since $d(P, Q) \in \mathbb{R} \cup \{+\infty\}$, $d(A, B)$ does not take the value $-\infty$.

Lemma 25.4.2

Let $\{(P_n, Q_n)\}_{n=0}^{\infty}$ be sequences (not necessarily generated via alternating minimization). Then

$$d(P_n, Q_n) \geq d(\mathcal{P}_0, Q) \ \forall n \tag{25.28}$$

Proof.

Obvious via definitions.
Definitions

We define, for \(A \subseteq \mathcal{P} \) and \(B \subseteq \mathcal{Q} \),

\[
d(A, B) \triangleq \inf_{P \in A, Q \in B} d(P, Q) \tag{25.27}
\]

Since \(d(P, Q) \in \mathbb{R} \cup \{+\infty\} \), \(d(A, B) \) does not take the value \(-\infty\).

Lemma 25.4.2

Let \(\{(P_n, Q_n)\}_{n=0}^\infty \) be sequences (not necessarily generated via alternating minimization). Then

\[
d(P_n, Q_n) \geq d(\mathcal{P}_0, Q) \quad \forall n \tag{25.28}
\]

Proof.

Obvious via definitions.

Our goal is to first find when \(\lim_{n \to \infty} d(P_n, Q_n) = d(\mathcal{P}_0, Q) \).
Recall that limsup is different than lim,

\[
\limsup_{n \to \infty} a_n \triangleq \inf_{n>0} \left(\sup_{k>n} a_k \right) = \inf S
\]

(25.29)

where

\[
S = \{ a : a = \sup B_n \text{ for some } n, \text{ with } B_n = \{ a_n, a_{n+1}, \ldots, \} \}.
\]
Recall that \(\limsup \) is different than \(\lim \),

\[
\limsup_{n \to \infty} a_n \triangleq \inf_{n > 0} \left(\sup_{k > n} a_k \right) = \inf S
\]

(25.29)

where

\[
S = \{ a : a = \sup B_n \text{ for some } n, \text{ with } B_n = \{a_n, a_{n+1}, \ldots\} \}.
\]

For example, while \(\lim_{x \to \infty} \sin(x) \) does not exist, \(\limsup_{x \to \infty} \sin(x) = 1 \).
Recall that \(\limsup \) is different than \(\lim \),

\[
\limsup_{n \to \infty} a_n \triangleq \inf_{n>0} \left(\sup_{k>n} a_k \right) = \inf S \quad (25.29)
\]

where

\[
S = \{ a : a = \sup B_n \text{ for some } n, \text{ with } B_n = \{a_n, a_{n+1}, \ldots, \} \}.
\]

For example, while \(\lim_{x \to \infty} \sin(x) \) does not exist,

\[
\limsup_{x \to \infty} \sin(x) = 1.
\]

Also, \(\limsup_{x \to \infty} (\sin(x) - \sin^2(x)) = \).
Recall that \(\text{lim sup} \) is different than \(\text{lim} \),

\[
\lim sup \ a_n \overset{\Delta}{=} \inf_{n \to \infty} \left(\sup_{k>n} a_k \right) = \inf S \tag{25.29}
\]

where
\[
S = \{ a : a = \sup B_n \text{ for some } n, \text{ with } B_n = \{ a_n, a_{n+1}, \ldots, \} \}.
\]

For example, while \(\lim_{x \to \infty} \sin(x) \) does not exist,
\[
\lim sup_{x \to \infty} \sin(x) = 1.
\]

Also, \(\lim sup_{x \to \infty} (\sin(x) - \sin^2(x)) = 1/4. \)
Recall that limsup is different than lim,

$$\limsup_{n \to \infty} a_n \triangleq \inf_{n > 0} \left(\sup_{k > n} a_k \right) = \inf S \quad (25.29)$$

where

$$S = \{a : a = \sup B_n \text{ for some } n, \text{ with } B_n = \{a_n, a_{n+1}, \ldots, \}\}.$$

For example, while \(\lim_{x \to \infty} \sin(x) \) does not exist,

$$\limsup_{x \to \infty} \sin(x) = 1.$$

Also, \(\limsup_{x \to \infty} (\sin(x) - \sin^2(x)) = 1/4. \)

Thus, \(\limsup \) allows for oscillation in the sequences and in some sense \(\limsup \) asks for infimum convergence in the local maxima.
limsup/liminf

- Recall that limsup is different than lim,

\[
\limsup_{n \to \infty} a_n \triangleq \inf_{n > 0} \left(\sup_{k > n} a_k \right) = \inf S
\]

(25.29)

where

\[S = \{ a : a = \sup B_n \text{ for some } n, \text{ with } B_n = \{ a_n, a_{n+1}, \ldots, \} \}. \]

- For example, while \(\lim_{x \to \infty} \sin(x) \) does not exist,
 \(\limsup_{x \to \infty} \sin(x) = 1. \)
- Also, \(\limsup_{x \to \infty} (\sin(x) - \sin^2(x)) = 1/4. \)
- Thus, lim sup allows for oscillation in the sequences and in some sense limsup asks for infimum convergence in the local maxima.
- Also,

\[
\liminf_{n \to \infty} a_n \triangleq \sup_{n > 0} \left(\inf_{k > n} a_k \right)
\]

(25.30)

so lim inf asks for supremum convergence in the local minima.
Key Lemma

Lemma 25.4.3

Let a_n, b_n for $n = 0, 1, \ldots$ be extended real sequences in the sense
\[\forall n, a_n, b_n \in \mathbb{R} \cup \{+\infty\}. \]
Key Lemma

Lemma 25.4.3

Let a_n, b_n for $n = 0, 1, \ldots$ be extended real sequences in the sense $\forall n, a_n, b_n \in \mathbb{R} \cup \{+\infty\}$. Let c be finite arbitrary such that:

$$c + b_{n-1} \geq b_n + a_n, \quad \text{for } n = 1, 2, \ldots. \quad (25.31)$$
Key Lemma

Lemma 25.4.3

Let a_n, b_n for $n = 0, 1, \ldots$ be extended real sequences in the sense \(\forall n, a_n, b_n \in \mathbb{R} \cup \{+\infty\} \). Let c be finite arbitrary such that:

\[
 c + b_{n-1} \geq b_n + a_n, \quad \text{for } n = 1, 2, \ldots.
\]

(25.31)

And also assume that

\[
 \limsup_{n \to \infty} b_n > -\infty, \quad \text{and} \quad \exists n_0 \text{ s.t. } b_{n_0} < \infty.
\]

(25.32)
Lemma 25.4.3

Let \(a_n, b_n \) for \(n = 0, 1, \ldots \) be extended real sequences in the sense \(\forall n, a_n, b_n \in \mathbb{R} \cup \{+\infty\} \). Let \(c \) be finite arbitrary such that:
\[
c + b_{n-1} \geq b_n + a_n, \quad \text{for } n = 1, 2, \ldots.
\] (25.31)

And also assume that
\[
\limsup_{n \to \infty} b_n > -\infty, \quad \text{and} \quad \exists n_0 \text{ s.t. } b_{n_0} < \infty.
\] (25.32)

Then
\[
\liminf_{n \to \infty} a_n \leq c
\] (25.33)
Key Lemma

Lemma 25.4.3

Let \(a_n, b_n \) for \(n = 0, 1, \ldots \) be extended real sequences in the sense
\(\forall n, a_n, b_n \in \mathbb{R} \cup \{+\infty\} \). Let \(c \) be finite arbitrary such that:
\[
c + b_{n-1} \geq b_n + a_n, \quad \text{for } n = 1, 2, \ldots.
\] (25.31)

And also assume that
\[
\limsup_{n \to \infty} b_n > -\infty, \quad \text{and} \quad \exists n_0 \text{ s.t. } b_{n_0} < \infty.
\] (25.32)

Then
\[
\liminf_{n \to \infty} a_n \leq c
\] (25.33)

Also, if in addition, we assume that
\[
\sum_{n=0}^{\infty} (c - a_n)^+ < \infty
\] (25.34)
Key Lemma

Lemma 25.4.3

Let a_n, b_n for $n = 0, 1, \ldots$ be extended real sequences in the sense $\forall n, a_n, b_n \in \mathbb{R} \cup \{+\infty\}$. Let c be finite arbitrary such that:

$$c + b_{n-1} \geq b_n + a_n, \quad \text{for } n = 1, 2, \ldots.$$ \hspace{1cm} (25.31)

And also assume that

$$\limsup_{n \to \infty} b_n > -\infty, \quad \text{and} \quad \exists n_0 \text{ s.t. } b_{n_0} < \infty.$$ \hspace{1cm} (25.32)

Then

$$\liminf_{n \to \infty} a_n \leq c$$ \hspace{1cm} (25.33)

Also, if in addition, we assume that

$$\sum_{n=0}^{\infty} (c - a_n)^+ < \infty \quad \text{then} \quad \sum_{n=n_0+1}^{\infty} |a_n - c| < \infty$$ \hspace{1cm} (25.34)
Key Lemma

Lemma 25.4.3

Let \(a_n, b_n \) for \(n = 0, 1, \ldots \) be extended real sequences in the sense \(\forall n, a_n, b_n \in \mathbb{R} \cup \{+\infty\} \). Let \(c \) be finite arbitrary such that:

\[
 c + b_{n-1} \geq b_n + a_n, \quad \text{for } n = 1, 2, \ldots. \tag{25.31}
\]

And also assume that

\[
 \limsup_{n \to \infty} b_n > -\infty, \quad \text{and} \quad \exists n_0 \text{ s.t. } b_{n_0} < \infty. \tag{25.32}
\]

Then

\[
 \liminf_{n \to \infty} a_n \leq c \tag{25.33}
\]

Also, if in addition, we assume that

\[
 \sum_{n=0}^{\infty} (c - a_n)^+ < \infty \quad \text{then} \quad \sum_{n=n_0+1}^{\infty} |a_n - c| < \infty \tag{25.34}
\]

and as a result

\[
 \lim_{n \to \infty} a_n = c \tag{25.35}
\]
Proof.

- First, assume case where \(\sum_{n=0}^{\infty} (c - a_n)^+ = \infty \),
Key Lemma

Proof.

- First, assume case where \(\sum_{n=0}^{\infty} (c - a_n)^+ = \infty \),
- then since \(c \) is finite, for any \(n \) where \(a_n = +\infty \), those \(n \)s don’t contribute since \((c - \infty)^+ = 0 \). So we may assume \(a_n < \infty \).
Key Lemma

Proof.

- First, assume case where \(\sum_{n=0}^{\infty} (c - a_n)^+ = \infty \),
- then since \(c \) is finite, for any \(n \) where \(a_n = +\infty \), those \(n \)s don’t contribute since \((c - \infty)^+ = 0 \). So we may assume \(a_n < \infty \).
- In such case, we are summing finite values and getting an infinite result so \(a_n \) can’t converge to anything strictly greater than \(c \) (i.e., we can’t have that \(\lim \inf_{n \to \infty} a_n > c \) since if so, eventually we’d get \((c - a_n)^+ \) and the sum would be finite).

...
Key Lemma

Proof.

- First, assume case where $\sum_{n=0}^{\infty} (c - a_n)^+ = \infty$.
- then since c is finite, for any n where $a_n = +\infty$, those ns don’t contribute since $(c - \infty)^+ = 0$. So we may assume $a_n < \infty$.
- In such case, we are summing finite values and getting an infinite result so a_n can’t converge to anything strictly greater than c (i.e., we can’t have that $\liminf_{n \to \infty} a_n > c$ since if so, eventually we’d get $(c - a_n)^+$ and the sum would be finite).
- Thus, $\liminf_{n \to \infty} a_n \leq c$. ...
Key Lemma

Proof.

- Next if $b_{n_0} < \infty$ for some n_0, then since c is finite, and since

 $$c + b_{n-1} \geq b_n + a_n,$$

 then we have $a_n < \infty$, $b_n < \infty$, $\forall n > n_0$.
Key Lemma

Proof.

- Next if $b_{n_0} < \infty$ for some n_0, then since c is finite, and since

\[c + b_{n-1} \geq b_n + a_n, \]

(25.36)

then we have $a_n < \infty$, $b_n < \infty$, $\forall n > n_0$.

- Thus, $a_n - c \leq b_{n-1} - b_n$ for $n > n_0$,
Key Lemma

Proof.

• Next if \(b_{n_0} < \infty \) for some \(n_0 \), then since \(c \) is finite, and since

\[
c + b_{n-1} \geq b_n + a_n,
\]

then we have \(a_n < \infty, b_n < \infty, \forall n > n_0 \).

• Thus, \(a_n - c \leq b_{n-1} - b_n \) for \(n > n_0 \), giving:

\[
\sum_{n=n_0+1}^{n} (a_n - c) \leq \sum_{n=n_0+1}^{n} (b_{n-1} - b_n) = b_{n_0} - b_n \quad \forall n > n_0
\]

(25.37)
Key Lemma

Proof.

- Next if \(b_{n_0} < \infty \) for some \(n_0 \), then since \(c \) is finite, and since

\[
c + b_{n-1} \geq b_n + a_n,
\]

then we have \(a_n < \infty, b_n < \infty, \forall n > n_0 \).

- Thus, \(a_n - c \leq b_{n-1} - b_n \) for \(n > n_0 \), giving:

\[
\sum_{n=n_0+1}^{n} (a_n - c) \leq \sum_{n=n_0+1}^{n} (b_{n-1} - b_n) = b_{n_0} - b_n \quad \forall n > n_0
\]

(25.37)

- Since \(\limsup_{n \to \infty} b_n > -\infty \) (by assumption), and \(b_n < \infty \) for \(n > n_0 \), and if \(\sum_{n=0}^{\infty} (c - a_n)^+ < \infty \), we have that (exercise)

\[\lim_{n \to \infty} b_n - b_{n_0} > -\infty, \text{ or } \lim_{n \to \infty} b_{n_0} - b_n < \infty, \text{ meaning that it has a limit and } \sum_{n=0}^{\infty} (c - a_n) < \infty.\]
Key Lemma

Proof.

Then, if \(\sum_{n=n_0+1}^{\infty} (c - a_n)^+ < \infty \) and since in such case \(\sum_{n=n_0+1}^{\infty} (c - a_n) < \infty \), this means that \(\sum_{n=n_0+1}^{\infty} |a_n - c| < \infty \).
Key Lemma

Proof.

Then, if \(\sum_{n=n_0+1}^{\infty} (c - a_n)^+ < \infty \) and since in such case \(\sum_{n=n_0+1}^{\infty} (c - a_n) < \infty \), this means that \(\sum_{n=n_0+1}^{\infty} |a_n - c| < \infty \).

Why? Let \(a^+ = \max(a, 0) \) and \(a^- = \max(-a, 0) \) so that \(a = a^+ - a^- \) and \(|a| = a^+ + a^- \). All are \(\neq -\infty \). Then if \(a = a^+ - a^- = c_\pm < \infty \) and if \(a^+ = c_+ < \infty \), then \(|a| = a^+ + a^- = -c_\pm < \infty \).

...
Key Lemma

Proof.

- Then, if \(\sum_{n=n_0+1}^{\infty} (c - a_n)^+ < \infty \) and since in such case \(\sum_{n=n_0+1}^{\infty} (c - a_n) < \infty \), this means that \(\sum_{n=n_0+1}^{\infty} |a_n - c| < \infty \).

- Why? Let \(a^+ = \max(a, 0) \) and \(a^- = \max(-a, 0) \) so that \(a = a^+ - a^- \) and \(|a| = a^+ + a^- \). All are \(\neq -\infty \). Then if \(a = a^+ - a^- = c_\pm < \infty \) and if \(a^+ = c_+ < \infty \), then \(|a| = a^+ + a^- = -c_\pm < \infty \).

- Then when \(\sum_{n=n_0+1}^{\infty} |a_n - c| < \infty \), this means that \(\lim_{n \to \infty} a_n = c \).

\[\ldots \]
Proof.

Restated, since \(\sum_{n=n_0+1}^{N} (c - a_n)^+ < \infty \), this means that series \(S_N = \sum_{n=n_0+1}^{N} (c - a_n)^+ \) has a limit, \(N \geq n_0 + 1 \), and that also \(R_N = \sum_{n=n_0+1}^{N} (a_n - c) \) also has a limit (\(\lim_{N \to \infty} R_N \) exists in the extended reals). (exercise: justify this step)
Key Lemma

Proof.

- Restated, since $\sum_{n=n_0+1}^{N} (c - a_n)^+ < \infty$, this means that series $S_N = \sum_{n=n_0+1}^{N} (c - a_n)^+$ has a limit, $N \geq n_0 + 1$, and that also $R_N = \sum_{n=n_0+1}^{N} (a_n - c)$ also has a limit ($\lim_{N \to \infty} R_N$ exists in the extended reals. (*exercise: justify this step*)

- Also, if the limit is finite, then we have

$$\sum_{n=n_0+1}^{\infty} (a_n - c) < \infty \Rightarrow \sum_{n=n_0+1}^{\infty} (a_n - c)^+ < \infty \Rightarrow \sum_{n=n_0+1}^{\infty} (c - a_n)^- < \infty$$
Key Lemma

Proof.

- Restated, since \(\sum_{n=n_0+1}^{N}(c - a_n)^+ < \infty \), this means that series \(S_N = \sum_{n=n_0+1}^{N}(c - a_n)^+ \) has a limit, \(N \geq n_0 + 1 \), and that also \(R_N = \sum_{n=n_0+1}^{N}(a_n - c) \) also has a limit (\(\lim_{N \to \infty} R_N \) exists in the extended reals). (exercise: justify this step)

- Also, if the limit is finite, then we have

\[
\sum_{n=n_0+1}^{\infty} (a_n - c) < \infty \Rightarrow \sum_{n=n_0+1}^{\infty} (a_n - c)^+ < \infty \Rightarrow \sum_{n=n_0+1}^{\infty} (c - a_n)^- < \infty
\]

- This and \(\sum_{n=n_0+1}^{\infty}(a_n - c)^+ < \infty \) means \(\sum_{n=n_0+1}^{\infty}(c - a_n)^- + (c - a_n)^+ < \infty \)
Key Lemma

Proof.

- Restated, since \(\sum_{n=n_0+1}^{N} (c - a_n)^+ < \infty \), this means that series
 \[S_N = \sum_{n=n_0+1}^{N} (c - a_n)^+ \]
 has a limit, \(N \geq n_0 + 1 \), and that also
 \[R_N = \sum_{n=n_0+1}^{N} (a_n - c) \]
 also has a limit (\(\lim_{N \to \infty} R_N \) exists in the extended reals. (exercise: justify this step)

- Also, if the limit is finite, then we have

\[
\sum_{n=n_0+1}^{\infty} (a_n - c) < \infty \Rightarrow \sum_{n=n_0+1}^{\infty} (a_n - c)^+ < \infty \Rightarrow \sum_{n=n_0+1}^{\infty} (c - a_n)^- < \infty
\]

- This and \(\sum_{n=n_0+1}^{\infty} (a_n - c)^+ < \infty \) means
 \[
 \sum_{n=n_0+1}^{\infty} (c - a_n)^- + (c - a_n)^+ < \infty
 \]

- Implying that \(\sum_{n=n_0+1}^{\infty} |c - a_n| < \infty \) or \(\lim_{n \to \infty} a_n = c \).
Theorem 25.4.4

Given a set of arbitrary sequences \(\{P_n\}_{n=0}^\infty, \{Q_n\}_{n=0}^\infty \) from (resp.) \(P \) and \(Q \) such that the five-points property holds as follows:

\[
d(P, Q) + d(P, Q_{n-1}) \geq d(P, Q_n) + d(P_n, Q_n) \quad n = 1, 2, \ldots \quad (25.38)
\]
1st Main theorem

Theorem 25.4.4

Given a set of arbitrary sequences \(\{P_n\}_{n=0}^{\infty}, \{Q_n\}_{n=0}^{\infty} \) from (resp.) \(P \) and \(Q \) *such that the five-points property holds as follows:*

\[
d(P, Q) + d(P, Q_{n-1}) \geq d(P, Q_n) + d(P_n, Q_n) \quad n = 1, 2, \ldots \quad (25.38)
\]

Note: no minimization done here, only 5PP condition on the sequences.
1st Main theorem

Theorem 25.4.4

Given a set of arbitrary sequences \(\{P_n\}_{n=0}^{\infty}, \{Q_n\}_{n=0}^{\infty} \) from (resp.) \(P \) and \(Q \) such that the five-points property holds as follows:

\[
d(P, Q) + d(P, Q_{n-1}) \geq d(P, Q_n) + d(P_n, Q_n) \quad n = 1, 2, \ldots \quad (25.38)
\]

Note: no minimization done here, only 5PP condition on the sequences. Then if either: A) \(\forall P \in P_0; \)

\[
\lim_{n \to \infty} d(P_n, Q_n) = d(P_0, Q_0).
\]

And if A holds then \(d(P_n, Q_n) \) is non-increasing.

And if B holds then \(\sum_{n=1}^{\infty} (d(P_n, Q_n) - d(P_0, Q_0)) < \infty \) (25.40)
1st Main theorem

Theorem 25.4.4

Given a set of arbitrary sequences \(\{P_n\}_{n=0}^{\infty}, \{Q_n\}_{n=0}^{\infty} \) from (resp.) \(\mathcal{P} \) and \(Q \) such that the five-points property holds as follows:

\[
d(P, Q) + d(P, Q_{n-1}) \geq d(P, Q_n) + d(P_n, Q_n) \quad n = 1, 2, \ldots
\]

(25.38)

Note: no minimization done here, only 5PP condition on the sequences. Then if either: A) \(\forall P \in \mathcal{P}_0 \); or B) for some \(P \in \mathcal{P}_0 \) s.t. \(d(P, Q) = d(\mathcal{P}_0, Q) \),
1st Main theorem

Theorem 25.4.4

Given a set of arbitrary sequences \(\{P_n\}_{n=0}^{\infty}, \{Q_n\}_{n=0}^{\infty} \) *from (resp.)* \(P \) *and* \(Q \) *such that the five-points property holds as follows:*

\[
\quad d(P, Q) + d(P, Q_{n-1}) \geq d(P, Q_n) + d(P_n, Q_n) \quad n = 1, 2, \ldots \quad (25.38)
\]

Note: no minimization done here, only 5PP condition on the sequences. Then if either: A) \(\forall P \in P_0; \) or B) for some \(P \in P_0 \) s.t. \(d(P, Q) = d(P_0, Q) \), we have:

\[
\quad \lim_{n \to \infty} d(P_n, Q_n) = d(P_0, Q). \quad (25.39)
\]
Theorem 25.4.4

Given a set of arbitrary sequences \(\{P_n\}_{n=0}^{\infty}, \{Q_n\}_{n=0}^{\infty} \) from (resp.) \(P \) and \(Q \) such that the five-points property holds as follows:

\[
d(P, Q) + d(P, Q_{n-1}) \geq d(P, Q_n) + d(P_n, Q_n) \quad n = 1, 2, \ldots \quad (25.38)
\]

Note: no minimization done here, only 5PP condition on the sequences. Then if either: A) \(\forall P \in P_0 \); or B) for some \(P \in P_0 \) s.t. \(d(P, Q) = d(P_0, Q) \), we have:

\[
\lim_{n \to \infty} d(P_n, Q_n) = d(P_0, Q). \quad (25.39)
\]

And if A holds then \(d(P_n, Q_n) \) is non-increasing.
1st Main theorem

Theorem 25.4.4

Given a set of arbitrary sequences \(\{P_n\}_{n=0}^{\infty}, \{Q_n\}_{n=0}^{\infty} \) from (resp.) \(P \) and \(Q \) such that the five-points property holds as follows:

\[
d(P, Q) + d(P, Q_{n-1}) \geq d(P, Q_n) + d(P_n, Q_n) \quad n = 1, 2, \ldots \quad (25.38)
\]

Note: no minimization done here, only 5PP condition on the sequences. Then if either: A) \(\forall P \in P_0 \); or B) for some \(P \in P_0 \) s.t. \(d(P, Q) = d(P_0, Q) \), we have:

\[
\lim_{n \to \infty} d(P_n, Q_n) = d(P_0, Q). \quad (25.39)
\]

And if A holds then \(d(P_n, Q_n) \) is non-increasing. And if B holds then

\[
\sum_{n=n_1}^{\infty} (d(P_n, Q_n) - d(P_0, Q)) < \infty \quad (25.40)
\]
Proof of 1st main theorem

Proof.

- If $P_0 = \emptyset$ then, for all $n \geq 1$, we have

$$d(P_n, Q_n) = d(P_0, Q) = \inf_{P \in P_0, Q \in Q} d(P, Q) = \inf \emptyset = \infty \quad (25.41)$$

so theorem is true in this case (l.h.s. holds by definition of P_0).
Proof.

- If \(P_0 = \emptyset \) then, for all \(n \geq 1 \), we have

\[
d(P_n, Q_n) = d(P_0, Q) = \inf_{P \in P_0, Q \in Q} d(P, Q) = \inf \emptyset = \infty \quad (25.41)
\]

so theorem is true in this case (l.h.s. holds by definition of \(P_0 \)).

- Suppose \(P_0 \neq \emptyset \) and that Eq (25.38) holds for some \(P \in P_0 \).
Proof.

- If $\mathcal{P}_0 = \emptyset$ then, for all $n \geq 1$, we have

\[
d(P_n, Q_n) = d(\mathcal{P}_0, Q) = \inf_{P \in \mathcal{P}_0, Q \in Q} d(P, Q) = \inf \emptyset = \infty \quad (25.41)
\]

so theorem is true in this case (l.h.s. holds by definition of \mathcal{P}_0).

- Suppose $\mathcal{P}_0 \neq \emptyset$ and that Eq (25.38) holds for some $P \in \mathcal{P}_0$.

- Then, lemma 25.4.3 ($c + b_{n-1} \geq b_n + a_n$, $n = 1, 2, \ldots$) with

\[
c = d(P, Q), \quad b_n = d(P, Q_n), \quad a_n = d(P_n, Q_n) \quad (25.42)
\]
Proof of 1st main theorem

Proof.

- If $\mathcal{P}_0 = \emptyset$ then, for all $n \geq 1$, we have
 \[d(P_n, Q_n) = d(\mathcal{P}_0, Q) = \inf_{P \in \mathcal{P}_0, Q \in \mathcal{Q}} d(P, Q) = \inf \emptyset = \infty \quad (25.41) \]
 so theorem is true in this case (l.h.s. holds by definition of \mathcal{P}_0).

- Suppose $\mathcal{P}_0 \neq \emptyset$ and that Eq (25.38) holds for some $P \in \mathcal{P}_0$.

- Then, lemma 25.4.3 ($c + b_{n-1} \geq b_n + a_n, \ n = 1, 2, \ldots$) with
 \[c = d(P, Q), \ b_n = d(P, Q_n), \ a_n = d(P_n, Q_n) \quad (25.42) \]

- Why? Since $P \in \mathcal{P}_0$, we have both $\exists n_0$ s.t., $b_{n_0} < \infty$ and also $c < \infty$ (all by the def of \mathcal{P}_0) implying $a_n < \infty$ for $n \geq n_0$.
Proof of 1st main theorem

Proof.

- If \(P_0 = \emptyset \) then, for all \(n \geq 1 \), we have

 \[
 d(P_n, Q_n) = d(P_0, Q) = \inf_{P \in P_0, Q \in Q} d(P, Q) = \inf \emptyset = \infty \quad (25.41)
 \]

 so theorem is true in this case (l.h.s. holds by definition of \(P_0 \)).

- Suppose \(P_0 \neq \emptyset \) and that Eq (25.38) holds for some \(P \in P_0 \).

- Then, lemma 25.4.3 \((c + b_{n-1} \geq b_n + a_n, \ n = 1, 2, \ldots) \) with

 \[
 c = d(P, Q), \quad b_n = d(P, Q_n), \quad a_n = d(P_n, Q_n) \quad (25.42)
 \]

 Why? Since \(P \in P_0 \), we have both \(\exists n_0 \) s.t., \(b_{n_0} < \infty \) and also \(c < \infty \) (all by the def of \(P_0 \)) implying \(a_n < \infty \) for \(n \geq n_0 \).

 Also, \(\limsup_{n \to \infty} b_n > -\infty \) since Eq (25.38) with \(n = n_0 + 1 \) implies \(c > -\infty \), and \(b_n \geq c = d(P, Q) > -\infty \), since \(d \in \mathbb{R} \cup \{+\infty\} \).
Proof of 1st main theorem

Proof.

- So, lemma 25.4.3 holds here and from it we get:
Proof.

- So, lemma 25.4.3 holds here and from it we get:

- Under A: \(\forall P \in \mathcal{P}_0 \), we have

\[
\liminf_{n \to \infty} a_n = \liminf_{n \to \infty} d(P_n, Q_n) \leq c = d(P, Q) < \infty \quad (25.43)
\]
Proof.

- So, lemma 25.4.3 holds here and from it we get:

 Under A: \(\forall P \in \mathcal{P}_0 \), we have

 \[
 \liminf_{n \to \infty} a_n = \liminf_{n \to \infty} d(P_n, Q_n) \leq c = d(P, Q) < \infty \tag{25.43}
 \]

- Thus, \(\forall P \in \mathcal{P}_0 \), we have that \(d(P_n, Q_n) \) “converges” to a finite value (not \(\infty \)) since \(d > -\infty \) (since it holds for all \(P \in \mathcal{P}_0 \), we have \(\liminf_{n \to \infty} d(P_n, Q_n) \leq d(\mathcal{P}_0, Q) < \infty \)).
Proof.

- So, lemma 25.4.3 holds here and from it we get:

- Under A: \(\forall P \in \mathcal{P}_0, \) we have

\[
\liminf_{n \to \infty} a_n = \liminf_{n \to \infty} d(P_n, Q_n) \leq c = d(P, Q) < \infty \quad (25.43)
\]

- Thus, \(\forall P \in \mathcal{P}_0, \) we have that \(d(P_n, Q_n) \) “converges” to a finite value (not \(\infty \)) since \(d > -\infty \) (since it holds for all \(P \in \mathcal{P}_0, \) we have \(\liminf_{n \to \infty} d(P_n, Q_n) \leq d(\mathcal{P}_0, Q) < \infty \)).

- Recall, \(d(P_n, Q_n) \geq d(\mathcal{P}_0, Q) \) for \(n = 0, 1, \ldots \) for any sequence \((\{P_n, Q_n\})_{n=0}^\infty\)
Proof of 1st main theorem

Proof.

- So, lemma 25.4.3 holds here and from it we get:

- Under A: $\forall P \in \mathcal{P}_0$, we have

 $$
 \liminf_{n \to \infty} a_n = \liminf_{n \to \infty} d(P_n, Q_n) \leq c = d(P, Q) < \infty \quad (25.43)
 $$

- Thus, $\forall P \in \mathcal{P}_0$, we have that $d(P_n, Q_n)$ “converges” to a finite value (not ∞) since $d > -\infty$ (since it holds for all $P \in \mathcal{P}_0$, we have $\liminf_{n \to \infty} d(P_n, Q_n) \leq d(\mathcal{P}_0, Q) < \infty$).

- Recall, $d(P_n, Q_n) \geq d(\mathcal{P}_0, Q)$ for $n = 0, 1, \ldots$ for any sequence $(\{P_n, Q_n\})_{n=0}^{\infty}$

- Also, let $P = P_{n-1}$ in Eq (25.38), so we get:

 $$
 d(P_{n-1}, Q) + d(P_{n-1}, Q_{n-1}) \geq d(P_{n-1}, Q_n) + d(P_n, Q_n) \quad (25.44)
 $$
Proof of 1st main theorem

Proof.

This implies that

\[
d(P_{n-1}, Q_{n-1}) \geq d(P_{n-1}, Q_n) - d(P_{n-1}, Q) + d(P_n, Q_n) \geq d(P_n, Q_n)
\]

(25.45)
Proof.

This implies that

\[d(P_{n-1}, Q_{n-1}) \geq d(P_{n-1}, Q_n) - d(P_{n-1}, Q) + d(P_n, Q_n) \geq d(P_n, Q_n) \geq 0 \]

\[(25.45) \]

So, a non-increasing sequence with a lower bound (even so if \(d(P_{n-1}, Q_{n-1}) = \infty \) or if it is finite) will converge.
Proof of 1st main theorem

Proof.

This implies that

\[
d(P_{n-1}, Q_{n-1}) \geq d(P_{n-1}, Q_n) - d(P_{n-1}, Q) + d(P_n, Q_n) \geq d(P_n, Q_n)
\]

(25.45)

So, a non-increasing sequence with a lower bound (even so if \(d(P_{n-1}, Q_{n-1}) = \infty\) or if it is finite) will converge.

Non-increasing sequence with a lower bound of \(d(P_0, Q)\) means that

\[
\lim_{n \to \infty} d(P_n, Q_n) = d(P_0, Q)
\]

(25.46)
Proof.

- Next, under B (for some $P \in \mathcal{P}_0$ s.t. $d(P, Q) = d(\mathcal{P}_0, Q)$), we have that

$$d(P_n, Q_n) \geq d(\mathcal{P}_0, Q) = d(P, Q) \quad (25.47)$$

which follows since, as mentioned earlier, $d(P_n, Q_n) \geq d(\mathcal{P}_0, Q)$ for $n = 0, 1, \ldots$ for any sequence $(\{P_n, Q_n\})_{n=0}^{\infty}$.
Proof.

Next, under B (for some \(P \in \mathcal{P}_0 \) s.t. \(d(P, Q) = d(\mathcal{P}_0, Q) \)), we have that

\[
d(P_n, Q_n) \geq d(\mathcal{P}_0, Q) = d(P, Q)
\] (25.47)

which follows since, as mentioned earlier, \(d(P_n, Q_n) \geq d(\mathcal{P}_0, Q) \) for \(n = 0, 1, \ldots \) for any sequence \((\{P_n, Q_n\})_{n=0}^{\infty} \)

This means,

\[
a_n = d(P_n, Q_n) \geq c = d(P, Q)
\] (25.48)

or that \(c - a_n \leq 0 \), implying that \(\sum_{n=0}^{\infty} (c - a_n)^+ < \infty \)
Proof of 1st main theorem

Proof.

Next, under B (for some $P \in \mathcal{P}_0$ s.t. $d(P, Q) = d(\mathcal{P}_0, Q)$), we have that

$$d(P_n, Q_n) \geq d(\mathcal{P}_0, Q) = d(P, Q) \quad (25.47)$$

which follows since, as mentioned earlier, $d(P_n, Q_n) \geq d(\mathcal{P}_0, Q)$ for $n = 0, 1, \ldots$ for any sequence $(\{P_n, Q_n\})_{n=0}^\infty$

This means,

$$a_n = d(P_n, Q_n) \geq c = d(P, Q) \quad (25.48)$$

or that $c - a_n \leq 0$, implying that $\sum_{n=0}^\infty (c - a_n)^+ < \infty$

From lemma 25.4.3, this gives $\lim_{n \to \infty} a_n = c$ or

$$\lim_{n \to \infty} d(P_n, Q_n) = d(P, Q) = d(\mathcal{P}_0, Q) \quad (25.49)$$
Proof.

- And since (as shown earlier)

\[
\sum_{n=n_1}^{\infty} (a_n - c) < \infty \tag{25.50}
\]
Proof of 1st main theorem

Proof.

- And since (as shown earlier)

\[\sum_{n=n_1}^{\infty} (a_n - c) < \infty \]

(25.50)

- we have

\[\sum_{n=n_1}^{\infty} (d(P_n, Q_n) - d(P_0, Q)) < \infty \]

(25.51)

(25.52)

(25.53)
Sequences

- Consider next sequences \(\{(P_n, Q_n)\}_{n=0}^{\infty} \) constructed by alternating minimization with arbitrary starting point \(P_0 \in P \)

\[
P_0 \xrightarrow{1} Q_0 \xrightarrow{2} P_1 \xrightarrow{1} Q_1 \xrightarrow{2} P_2 \xrightarrow{1} Q_2 \xrightarrow{2} P_3 \xrightarrow{1} Q_3 \xrightarrow{2} \cdots \quad (25.54)
\]
Sequences

Consider next sequences \(\{(P_n, Q_n)\}_{n=0}^\infty \) constructed by alternating minimization with arbitrary starting point \(P_0 \in \mathcal{P} \)

\[
P_0 \overset{1}{\rightarrow} Q_0 \overset{2}{\rightarrow} P_1 \overset{1}{\rightarrow} Q_1 \overset{2}{\rightarrow} P_2 \overset{1}{\rightarrow} Q_2 \overset{2}{\rightarrow} P_3 \overset{1}{\rightarrow} Q_3 \overset{2}{\rightarrow} \cdots \quad (25.54)
\]

Then we have that:

\[
d(P_n, Q_n) \geq d(P_{n+1}, Q_n) \geq d(P_{n+1}, Q_{n+1}) \quad \text{for } n = 0, 1, \ldots \quad (25.55)
\]
Sequences

- Consider next sequences \(\{(P_n, Q_n)\}_{n=0}^{\infty} \) constructed by alternating minimization with arbitrary starting point \(P_0 \in \mathcal{P} \)

\[
P_0 \xrightarrow{1} Q_0 \xrightarrow{2} P_1 \xrightarrow{1} Q_1 \xrightarrow{2} P_2 \xrightarrow{1} Q_2 \xrightarrow{2} P_3 \xrightarrow{1} Q_3 \xrightarrow{2} \cdots \quad (25.54)
\]

- Then we have that:

\[
d(P_n, Q_n) \geq d(P_{n+1}, Q_n) \geq d(P_{n+1}, Q_{n+1}) \quad \text{for } n = 0, 1, \ldots \quad (25.55)
\]

- And thus we have an ever non-increasing sequence.
Sequences

- Consider next sequences \(\{(P_n, Q_n)\}_{n=0}^{\infty} \) constructed by alternating minimization with arbitrary starting point \(P_0 \in \mathcal{P} \)

\[
P_0 \rightarrow Q_0 \rightarrow P_1 \rightarrow Q_1 \rightarrow P_2 \rightarrow Q_2 \rightarrow P_3 \rightarrow Q_3 \rightarrow \cdots \quad (25.54)
\]

- Then we have that:

\[
d(P_n, Q_n) \geq d(P_{n+1}, Q_n) \geq d(P_{n+1}, Q_{n+1}) \quad \text{for } n = 0, 1, \ldots \quad (25.55)
\]

- And thus we have an ever non-increasing sequence.

- If 5PP holds for some \(P \in \mathcal{P} \) (for now, do some \(P \) but will later relate it to \(P_0 \)), and if we construct an alternating minimization sequence starting at some \(P_0 \in \mathcal{P} \), we have conditions of Theorem 25.4.4 met at \(P \in \mathcal{P}_0 \)
Sequences

That is, for \(n = 1 \) we have \(Q_0 \xrightarrow{2} P_1 \xrightarrow{1} Q_1 \) so

\[
d(P, Q) + d(P, Q_0) \geq d(P, Q_1) + d(P_1, Q_1) \quad \forall Q, Q_0
\]

which is just the 5PP which is presumed to hold.
Sequences

- That is, for \(n = 1 \) we have \(Q_0^2 \rightarrow P_1^1 \rightarrow Q_1 \) so

\[
d(P, Q) + d(P, Q_0) \geq d(P, Q_1) + d(P_1, Q_1) \quad \forall Q, Q_0
\] (25.56)

which is just the 5PP which is presumed to hold.

- Thus, this also certainly holds for \(Q_0 \) such that \(P_0^1 \rightarrow Q_0 \).
Sequences

- That is, for \(n = 1 \) we have \(Q_0 \xrightarrow{2} P_1 \xrightarrow{1} Q_1 \) so

\[
d(P, Q) + d(P, Q_0) \geq d(P, Q_1) + d(P_1, Q_1) \quad \forall Q, Q_0
\]

which is just the 5PP which is presumed to hold.

- Thus, this also certainly holds for \(Q_0 \) such that \(P_0 \xrightarrow{1} Q_0 \).

- and also, we have the same hold when the first term is the particular \(Q \) that achieves \(d(P, Q) = \inf_{Q \in Q} d(P, Q) \).
Sequences

- That is, for $n = 1$ we have $Q_0 \xrightarrow{2} P_1 \xrightarrow{1} Q_1$ so
 \[d(P, Q) + d(P, Q_0) \geq d(P, Q_1) + d(P_1, Q_1) \quad \forall Q, Q_0 \]
 which is just the 5PP which is presumed to hold.

- Thus, this also certainly holds for Q_0 such that $P_0 \xrightarrow{1} Q_0$.

- and also, we have the same hold when the first term is the particular Q that achieves $d(P, Q) = \inf_{Q \in \mathcal{Q}} d(P, Q)$.

- For $n = 2$ we have $Q_1 \xrightarrow{2} P_2 \xrightarrow{1} Q_2$ so
 \[d(P, Q) + d(P, Q_1) \geq d(P, Q_2) + d(P_2, Q_2) \quad \forall Q, Q_0 \]
 so also true for Q_1 such that $P_1 \xrightarrow{1} Q_1$.

\[25.56 \]
\[25.57 \]
Sequences

- That is, for $n = 1$ we have $Q_0 \xrightarrow{2} P_1 \xrightarrow{1} Q_1$ so

$$d(P, Q) + d(P, Q_0) \geq d(P, Q_1) + d(P_1, Q_1) \quad \forall Q, Q_0$$ (25.56)

which is just the 5PP which is presumed to hold.

- Thus, this also certainly holds for Q_0 such that $P_0 \xrightarrow{1} Q_0$.

- and also, we have the same hold when the first term is the particular Q that achieves $d(P, Q) = \inf_{Q \in Q} d(P, Q)$.

- For $n = 2$ we have $Q_1 \xrightarrow{2} P_2 \xrightarrow{1} Q_2$ so

$$d(P, Q) + d(P, Q_1) \geq d(P, Q_2) + d(P_2, Q_2) \quad \forall Q, Q_0$$ (25.57)

so also true for Q_1 such that $P_1 \xrightarrow{1} Q_1$.

- Same for $n > 2$, etc.
So Theorem 25.4.4 holds in this case (i.e.,
\[\lim_{n \to \infty} d(P_n, Q_n) = d(P_0, Q) \].

On the other hand, we want other (perhaps easier) conditions that, if true, imply the five points property. This will make checking 5PP much easier. We identify two that, if both hold, will imply 5PP. These are the three-points property (3PP) and the four-points property (4PP), and 3PP + 4PP = 5PP.
Sequences

- So Theorem 25.4.4 holds in this case (i.e., \(\lim_{n \to \infty} d(P_n, Q_n) = d(P_0, Q) \)).
- On the other hand, we want other (perhaps easier) conditions that, if true, imply the five points property.
Sequences

- So Theorem 25.4.4 holds in this case (i.e., $\lim_{n \to \infty} d(P_n, Q_n) = d(P_0, Q)$).
- On the other hand, we want other (perhaps easier) conditions that, if true, imply the five points property.
- This will make checking 5PP much easier.
Sequences

- So Theorem 25.4.4 holds in this case (i.e.,
 \[\lim_{n \to \infty} d(P_n, Q_n) = d(P_0, Q) \].

- On the other hand, we want other (perhaps easier) conditions that, if true, imply the five points property.

- This will make checking 5PP much easier.

- We identify two that, if both hold, will imply 5PP.
So Theorem 25.4.4 holds in this case (i.e., \(\lim_{n \to \infty} d(P_n, Q_n) = d(P_0, Q) \)).

On the other hand, we want other (perhaps easier) conditions that, if true, imply the five points property.

This will make checking 5PP much easier.

We identify two that, if both hold, will imply 5PP.

These are the three-points property (3PP) and the four-points property (4PP), and 3PP + 4PP = 5PP.
Definition 25.4.5 (Three Points Property (3PP))

Let $\delta(P, P') \geq 0$ be a function $\delta : \mathcal{P} \times \mathcal{P} \to \mathbb{R}_+$ such that $\delta(P, P) = 0$ for all $P \in \mathcal{P}$. For $d : \mathcal{P} \times \mathcal{Q} \to \mathbb{R} \cup \{+\infty\}$ and $\delta : \mathcal{P} \times \mathcal{P} \to \mathbb{R}_+$, the three points property for $P \in \mathcal{P}$ holds if $\forall Q_0$

$$\delta(P, P_1) + d(P_1, Q_0) \leq d(P, Q_0) \quad \text{whenever} \quad Q_0 \xrightarrow{2} P_1 \quad (25.58)$$
Three Points Property

Definition 25.4.5 (Three Points Property (3PP))

Let \(\delta(P, P') \geq 0 \) be a function \(\delta : \mathcal{P} \times \mathcal{P} \to \mathbb{R}_+ \) such that \(\delta(P, P) = 0 \) for all \(P \in \mathcal{P} \). For \(d : \mathcal{P} \times Q \to \mathbb{R} \cup \{+\infty\} \) and \(\delta : \mathcal{P} \times \mathcal{P} \to \mathbb{R}_+ \), the three points property for \(P \in \mathcal{P} \) holds if \(\forall Q_0 \)

\[
\delta(P, P_1) + d(P_1, Q_0) \leq d(P, Q_0) \quad \text{whenever } Q_0 \rightarrow P_1 \quad (25.58)
\]

So sort of like a reverse triangle inequality.
Three Points Property

\[P \in \mathcal{P}, \quad \forall \, Q_0 \in \mathcal{Q} \]

\[d(P, Q_0) \geq \delta(P, P_1) + d(P_1, Q_0) \]

\[P_1 \in \arg\min_{P \in \mathcal{P}} d(P, Q_0) \]
Definition 25.4.6 (Four Points Property (4PP))

The 4PP holds for $P \in \mathcal{P}$ if $\forall Q \in \mathcal{Q}$, and $\forall P_1 \in \mathcal{P}$, we have that

$$d(P, Q_1) \leq \delta(P, P_1) + d(P, Q) \text{ whenever } P_1 \xrightarrow{1} Q_1$$

(25.59)
Four Points Property (4PP)

\[\delta(P, P_1) + d(P, Q) \geq d(P, Q_1) \]

- \(P \in \mathcal{P} \)
- \(\forall Q \in \mathcal{Q}, \forall P_1 \in \mathcal{P} \)
- \(Q_1 \in \arg\min_{Q \in \mathcal{Q}} d(P_1, Q) \)
Theorem 25.4.7

Let \(\{(P_n, Q_n)\}_{n=0}^{\infty} \) be sequences obtained by alternating minimization. Then

\[
\lim_{n \to \infty} d(P_n, Q_n) = d(\mathcal{P}_0, Q) \tag{25.60}
\]

if \(P \) is defined by either: A) all \(P \in \mathcal{P}_0 \); or B) some \(P \in \mathcal{P}_0 \) with \(d(P, Q) = d(\mathcal{P}_0, Q) \) has the 5PP. Also,
Theorem 25.4.7

Let \(\{(P_n, Q_n)\}_{n=0}^{\infty} \) be sequences obtained by alternating minimization. Then

\[
\lim_{n \to \infty} d(P_n, Q_n) = d(P_0, Q)
\]

(25.60)

if \(P \) is defined by either: A) all \(P \in P_0 \); or B) some \(P \in P_0 \) with \(d(P, Q) = d(P_0, Q) \) has the 5PP. Also,

1. \(3PP + 4PP \Rightarrow 5PP \)
Theorem 25.4.7

Let \(\{(P_n, Q_n)\}_{n=0}^{\infty} \) be sequences obtained by alternating minimization. Then

\[
\lim_{n \to \infty} d(P_n, Q_n) = d(P_0, Q) \tag{25.60}
\]

if \(P \) is defined by either: A) all \(P \in \mathcal{P}_0 \); or B) some \(P \in \mathcal{P}_0 \) with \(d(P, Q) = d(P_0, Q) \) has the 5PP. Also,

1. \(3PP + 4PP \Rightarrow 5PP \)

2. if A and \(3PP + 4PP \), then \(\delta(P, P_{n+1}) \leq \delta(P, P_n) \) for \(n = 0, 1, \ldots \) where \(P \) is that \(P \) for which A holds.
Second Main Theorem

Proof.

- We saw that 5PP + alternating minimization implies Theorem 25.4.4.
Second Main Theorem

Proof.

- We saw that 5PP + alternating minimization implies Theorem 25.4.4.
- Combining 3PP and 4PP we have:

\[Q_0 \xrightarrow{2} P_1 \xrightarrow{1} Q_1 \]
(25.61)

\[d(P, Q_0) - \delta(P, P_1) \geq d(P_1, Q_0) \]
3PP
(25.62)

\[\delta(P, P_1) + d(P, Q) \geq d(P, Q_1) \]
4PP
(25.63)

If we only consider \(Q_0 \) with \(d(P, Q_0) < \infty \) then \(\delta(P, P_1) < \infty \) since \(d(P_1, Q_0) \) is also finite (since \(d(P_1, Q_0) \leq d(P, Q_0) \) by \(Q_0 \xrightarrow{2} P_1 \)).

So we can add the two above:

\[d(P, Q_0) + d(P, Q) \geq d(P, Q_1) + d(P_1, Q_0) \]
(25.64)

\[\geq d(P, Q_1) + d(P_1, Q_1) \]
(25.65)

since \(P_1 \xrightarrow{1} Q_1 \), thus giving 5PP.
Second Main Theorem

Proof.

- We saw that 5PP + alternating minimization implies Theorem 25.4.4.

- Combining 3PP and 4PP we have:

\[Q_0 \xrightarrow{2} P_1 \xrightarrow{1} Q_1 \]
(25.61)

\[d(P, Q_0) - \delta(P, P_1) \geq d(P_1, Q_0) \]
3PP
(25.62)

\[\delta(P, P_1) + d(P, Q) \geq d(P, Q_1) \]
4PP
(25.63)

- If we only consider \(Q_0 \) with \(d(P, Q_0) < \infty \) then \(\delta(P, P_1) < \infty \) since \(d(P_1, Q_0) \) is also finite (since \(d(P_1, Q_0) \leq d(P, Q_0) \) by \(Q_0 \xrightarrow{2} P_1 \)).
Second Main Theorem

Proof.

- We saw that \(5\text{PP} + \) alternating minimization implies Theorem 25.4.4.

- Combining 3PP and 4PP we have:

\[
Q_0 \xrightarrow{2} P_1 \xrightarrow{1} Q_1
\]
\[
d(P, Q_0) - \delta(P, P_1) \geq d(P_1, Q_0) \quad \text{3PP} \tag{25.62}
\]
\[
\delta(P, P_1) + d(P, Q) \geq d(P, Q_1) \quad \text{4PP} \tag{25.63}
\]

- If we only consider \(Q_0\) with \(d(P, Q_0) < \infty\) then \(\delta(P, P_1) < \infty\) since \(d(P_1, Q_0)\) is also finite (since \(d(P_1, Q_0) \leq d(P, Q_0)\) by \(Q_0 \xrightarrow{2} P_1\)).

- So we can add the two above:

\[
d(P, Q_0) + d(P, Q) \geq d(P, Q_1) + d(P_1, Q_0) \tag{25.64}
\]
\[
\geq d(P, Q_1) + d(P_1, Q_1) \tag{25.65}
\]
Second Main Theorem

Proof.

Further, if of both 3 and 4 points property hold, then if

\[Q_n \xrightarrow{2} P_{n+1} \text{ in 3PP and } P_n \xrightarrow{1} Q_n \text{ in 4PP} \]

we get

\[\delta(P, P_{n+1}) + d(P_{n+1}, Q_n) \leq d(P, Q_n) \leq \delta(P, P_n) + d(P, Q) \]

(25.66)
Second Main Theorem

Proof.

Further, if of both 3 and 4 points property hold, then if

\[Q_n \overset{2}{\rightarrow} P_{n+1} \text{ in 3PP and } P_n \overset{1}{\rightarrow} Q_n \text{ in 4PP} \]

we get

\[\delta(P, P_{n+1}) + d(P_{n+1}, Q_n) \leq d(P, Q_n) \leq \delta(P, P_n) + d(P, Q) \]

(25.66)

This implies

\[\delta(P, P_{n+1}) \leq \delta(P, P_n) + [d(P, Q) - d(P_{n+1}, Q_n)] \forall Q \]

(25.67)

SO

\[\delta(P, P_{n+1}) \leq \delta(P, P_n) + \left[d(P, Q) - d(P_{n+1}, Q_n) \right] \leq 0 \]

(25.68)
Proof.

- Implying that \(\delta(P, P_{n+1}) \leq \delta(P, P_n) \)
Second Main Theorem

Proof.

- Implying that $\delta(P, P_{n+1}) \leq \delta(P, P_n)$

- Note, this shows that:

$$\lim_{n \to \infty} d(P_n, Q_n) = d(P_0, Q) \quad (25.69)$$
Second Main Theorem

Proof.

- Implying that $\delta(P, P_{n+1}) \leq \delta(P, P_n)$

- Note, this shows that:

 $$\lim_{n \to \infty} d(P_n, Q_n) = d(P_0, Q)$$ \hfill (25.69)

- Ideally, we would like $d(P_0, Q) = d(P, Q)$
Proof.

- Implying that $\delta(P, P_{n+1}) \leq \delta(P, P_n)$

Note, this shows that:

$$\lim_{n \to \infty} d(P_n, Q_n) = d(P_0, Q)$$

(25.69)

- Ideally, we would like $d(P_0, Q) = d(P, Q)$
- True of course if $d() < \infty$ for all P, Q, but note that KL-divergence is not so.
Second Main Theorem

Proof.

- Implying that $\delta(P, P_{n+1}) \leq \delta(P, P_n)$

- Note, this shows that:

$$\lim_{n \to \infty} d(P_n, Q_n) = d(P_0, Q)$$ \hspace{1cm} (25.69)

- Ideally, we would like $d(P_0, Q) = d(P, Q)$

- True of course if $d() < \infty$ for all P, Q, but note that KL-divergence is not so.

- may depend on the starting value P_0, so in applications it is important to select a good starting value.
Second Main Theorem

It turns out that if \mathcal{P} and \mathcal{Q} are convex and if $P \in \mathcal{P}$ and $Q \in \mathcal{Q}$ are measures on (X, \mathcal{X}) where X is finite (e.g., discrete probability measures), and if we take P_0 to be such that $P_0(x) > 0$
It turns out that if \mathcal{P} and \mathcal{Q} are convex and if $P \in \mathcal{P}$ and $Q \in \mathcal{Q}$ are measures on (X, \mathcal{X}) where X is finite (e.g., discrete probability measures), and if we take P_0 to be such that $P_0(x) > 0$ and if $\exists P \in \mathcal{P}, Q \in \mathcal{Q}$ s.t. $P(x)Q(x) > 0$, then it is the case that $P_0 = \{P: D(P||Q) < +\infty\}$ (25.70) has the property that $d(P_0, Q) = d(P, Q)$.
It turns out that if \mathcal{P} and \mathcal{Q} are convex and if $P \in \mathcal{P}$ and $Q \in \mathcal{Q}$ are measures on (X, \mathcal{X}) where X is finite (e.g., discrete probability measures), and if we take P_0 to be such that $P_0(x) > 0$ and if $\exists P \in \mathcal{P}, Q \in \mathcal{Q}$ s.t. $P(x)Q(x) > 0$, then it is the case that

$$\mathcal{P}_0 = \{P : D(P||Q) < +\infty\}$$ (25.70)

has the property that $d(\mathcal{P}_0, Q) = d(\mathcal{P}, Q)$.
Example

Let \mathcal{P}, \mathcal{Q} be closed convex subsets of a Hilbert space (normed space with a dot product s.t., every Cauchy sequence converges). Assume, e.g., \mathbb{R}^n
Example

- Let \mathcal{P}, \mathcal{Q} be closed convex subsets of a Hilbert space (normed space with a dot product s.t., every Cauchy sequence converges). Assume, e.g., \mathbb{R}^n
- Define $d(P, Q) = \|P - Q\|^2$ and $\delta(P, P') = \|P - P'\|^2$.
Example

Let P, Q be closed convex subsets of a Hilbert space (normed space with a dot product s.t., every Cauchy sequence converges). Assume, e.g., \mathbb{R}^n

Define $d(P, Q) = \|P - Q\|^2$ and $\delta(P, P') = \|P - P'\|^2$.

This satisfies 3PP since Pythagorean theorem for right triangles, and that main angle will always be $\geq \pi/2$.

\[\theta \geq \pi/2 \text{ if } d \text{ and } Q \text{ are both convex.} \]
Example: Squared Euclidean-Distance

Let \mathcal{P} and \mathcal{Q} be two non-empty closed convex subsets of \mathbb{R}^N.
Example: Squared Euclidean-Distance

Let \mathcal{P} and \mathcal{Q} be two non-empty closed convex subsets of \mathbb{R}^N.
Let $d(P, Q) = \|P - Q\|_2^2$ and $\delta(P, P') = \|P - P'\|_2^2$.
Example: Squared Euclidean-Distance

- Let \mathcal{P} and \mathcal{Q} be two non-empty closed convex subsets of \mathcal{R}^N.
- Let $d(P, Q) = \|P - Q\|_2^2$ and $\delta(P, P') = \|P - P'\|_2^2$
- Goal is to find $\min_{P \in \mathcal{P}, P' \in \mathcal{Q}} d(P, Q)$
Example: Squared Euclidean-Distance

- Let \mathcal{P} and \mathcal{Q} be two non-empty closed convex subsets of \mathbb{R}^N.
- Let $d(P, Q) = \|P - Q\|^2_2$ and $\delta(P, P') = \|P - P'\|^2_2$
- Goal is to find $\min_{P \in \mathcal{P}, P' \in \mathcal{Q}} d(P, Q)$
- Let P, Q_0 be given, and $P_1 = \arg\min_{P' \in \mathcal{P}} d(P', Q_0)$. Three points property states that, for all P, $d(P, Q_0) \geq \delta(P, P_1) + d(P_1, Q_0)$.

This follows since:

$$
\|P - Q_0\|^2_2 = \|P - P_1 + P_1 - Q_0\|^2_2 = \|P - P_1\|^2_2 + \|P_1 - Q_0\|^2_2 + 2 \langle P - P_1, P_1 - Q_0 \rangle
$$

This gives the result since $\langle P - P_1, P_1 - Q_0 \rangle \geq 0$.

Prof. Jeff Bilmes
Example: Squared Euclidean-Distance

- Let P and Q be two non-empty closed convex subsets of \mathbb{R}^N.
- Let $d(P, Q) = \|P - Q\|_2^2$ and $\delta(P, P') = \|P - P'\|_2^2$
- Goal is to find $\min_{P \in P, P \in Q} d(P, Q)$
- Let P, Q_0 be given, and $P_1 = \arg\min_{P' \in P} d(P', Q_0)$. Three points property states that, for all P, $d(P, Q_0) \geq \delta(P, P_1) + d(P_1, Q_0)$.
- This follows since:

\[
\begin{align*}
\|P - Q_0\|_2^2 &= \|P - P_1 + P_1 - Q_0\|_2^2 \\
&= \|P - P_1\|_2^2 + \|P_1 - Q_0\|_2^2 + 2\langle P - P_1, P_1 - Q_0 \rangle
\end{align*}
\]

(25.71)
(25.72)
Example: Squared Euclidean-Distance

- Let \mathcal{P} and \mathcal{Q} be two non-empty closed convex subsets of \mathbb{R}^N.
- Let $d(P, Q) = \| P - Q \|_2^2$ and $\delta(P, P') = \| P - P' \|_2^2$.
- Goal is to find $\min_{P \in \mathcal{P}, P \in \mathcal{Q}} d(P, Q)$.
- Let P, Q_0 be given, and $P_1 = \arg\min_{P' \in \mathcal{P}} d(P', Q_0)$. Three points property states that, for all P, $d(P, Q_0) \geq \delta(P, P_1) + d(P_1, Q_0)$.
- This follows since:

$$\| P - Q_0 \|_2^2 = \| P - P_1 + P_1 - Q_0 \|_2^2$$

$$= \| P - P_1 \|_2^2 + \| P_1 - Q_0 \|_2^2 + 2 \langle P - P_1, P_1 - Q_0 \rangle$$

(25.71) (25.72)

- This gives the result since $\langle P - P_1, P_1 - Q_0 \rangle \geq 0$
Example: Squared Euclidean-Distance

- Geometry of why $\langle P - P_1, P_1 - Q_0 \rangle \geq 0$
Example: Squared Euclidean-Distance

- Geometry of why $\langle P - P_1, P_1 - Q_0 \rangle \geq 0$
- Note that P_1 is the orthogonal projection of Q_0 onto (convex set) \mathcal{P}
Example: Squared Euclidean-Distance

- Geometry of why $\langle P - P_1, P_1 - Q_0 \rangle \geq 0$
- Note that P_1 is the orthogonal projection of Q_0 onto (convex set) \mathcal{P}

Exercise: Prove 4PP for squared Euclidean-Distance.
Example

- This also satisfies 4PP since angle at Q_1 are $\geq \pi/2$ (exercise: prove this).
Example

- This also satisfies 4PP since angle at Q_1 are $\geq \pi/2$ (exercise: prove this).

- Thus, since squared Euclidean-Distance satisfies both 3PP and 4PP, it satisfies 5PP.
So far, we have not required the sets to be convex (although of course the example in the squared-euclidean case, was).
Convex Sets

- So far, we have not required the sets to be convex (although of course the example in the squared-euclidean case, was).
- Let \((X, \mathcal{X})\) be a measurable space with sets of finite measures \(\mathcal{P}, \mathcal{Q}\) on \((X, \mathcal{X})\). That is, for all \(E \in \mathcal{X}\), \(P(E) < \infty\) for all \(P \in \mathcal{P}\).
Convex Sets

- So far, we have not required the sets to be convex (although of course the example in the squared-euclidean case, was).

- Let \((X, \mathcal{X})\) be a measurable space with sets of finite measures \(P, Q\) on \((X, \mathcal{X})\). That is, for all \(E \in \mathcal{X}\), \(P(E) < \infty\) for all \(P \in \mathcal{P}\).

- Let \(\mathcal{P}, \mathcal{Q}\) be convex (e.g., simplex or convex subsets thereof).
Convex Sets

- So far, we have not required the sets to be convex (although of course the example in the squared-euclidean case, was).
- Let \((X, \mathcal{X})\) be a measurable space with sets of finite measures \(P, Q\) on \((X, \mathcal{X})\). That is, for all \(E \in \mathcal{X}\), \(P(E) < \infty\) for all \(P \in \mathcal{P}\).
- Let \(\mathcal{P}, \mathcal{Q}\) be convex (e.g., simplex or convex subsets thereof)
- Define

\[
D(P||Q) = \begin{cases}
\int \log p dP & \text{if } P \ll Q \\
\infty & \text{if } P \nll Q
\end{cases}
\]

(25.73)

where \(p = \frac{dP}{dQ}\) is the Radon-Nikodym derivative (more later)
Convex Sets

- So far, we have not required the sets to be convex (although of course the example in the squared-euclidean case, was).
- Let \((X, \mathcal{X})\) be a measurable space with sets of finite measures \(P, Q\) on \((X, \mathcal{X})\). That is, for all \(E \in \mathcal{X}\), \(P(E) < \infty\) for all \(P \in \mathcal{P}\).
- Let \(\mathcal{P}, \mathcal{Q}\) be convex (e.g., simplex or convex subsets thereof)
- Define

\[
d(P, Q) = D(P \| Q) = \begin{cases}
\int \log p dP & \text{if } P \ll Q \\
\infty & \text{if } P \not\ll Q
\end{cases}
\] (25.73)

where \(p = \frac{dP}{dQ}\) is the Radon-Nikodym derivative (more later)

- Note, \(P \ll Q\) is spoken as “\(Q\) dominates \(P\)”, meaning for all \(E\) such that \(Q(E) = 0\), \(P(E) = 0\) (when \(Q\) becomes zero, it forces \(P\) to also be zero).
Convex Sets

- \(p = \frac{dP}{dQ} \) is the Radon-Nikodym derivative, meaning that \(\forall E \in \mathcal{X} \), we have that \(p \) is defined so that

\[
p(E) = \int_E \left[\frac{dP}{dQ} \right] dQ \tag{25.74}
\]

I.e., we see \(\frac{dP}{dQ} \) as a function that maps one measure to the other.
Convex Sets

- $p = \frac{dP}{dQ}$ is the Radon-Nikodym derivative, meaning that $\forall E \in \mathcal{X}$, we have that p is defined so that

$$p(E) = \int_E \left[\frac{dP}{dQ} \right] dQ$$ \hspace{1cm} (25.74)

I.e., we see $\frac{dP}{dQ}$ as a function that maps one measure to the other.

- Thus, if $P \ll Q$, then

$$D(P||Q) = \int \log \left[\frac{dP}{dQ} \right] dP = \int p(x) \log \frac{p(x)}{q(x)} dx$$ \hspace{1cm} (25.75)

This basically means that $\{q(x) = 0\} \Rightarrow \{p(x) = 0\}$.
Convex Sets

- \(p = \frac{dP}{dQ} \) is the Radon-Nikodym derivative, meaning that \(\forall E \in \mathcal{X} \), we have that \(p \) is defined so that

\[
p(E) = \int_E \left[\frac{dP}{dQ} \right] dQ
\]

(25.74)

I.e., we see \(\frac{dP}{dQ} \) as a function that maps one measure to the other.

- Thus, if \(P \ll Q \), then

\[
D(P||Q) = \int \log \left[\frac{dP}{dQ} \right] dP = \int p(x) \log \frac{p(x)}{q(x)} dx
\]

(25.75)

This basically means that \(\{ q(x) = 0 \} \Rightarrow \{ p(x) = 0 \} \).

- And if \(P \not\ll Q \), then, what happens? Could have \(q(x) = 0 \) without \(p(x) = 0 \).
Convex Sets

For $P, P' \in \mathcal{P}$, we have the generalized KL as follows:

$$\delta(P, P') \triangleq D(P \| P') + P'(X) - P(X) \geq 0 \quad (25.76)$$
Convex Sets

- For $P, P' \in \mathcal{P}$, we have the generalized KL as follows:

$$\delta(P, P') \triangleq D(P \| P') + P'(X) - P(X) \geq 0 \quad (25.76)$$

- So if the measures are probability measures then $P'(\mathcal{X}) = P(\mathcal{X}) = 1$, and we get back standard KL-divergence.
For $P, P' \in \mathcal{P}$, we have the generalized KL as follows:

$$\delta(P, P') \triangleq D(P \| P') + P'(X) - P(X) \geq 0$$ \hspace{1cm} (25.76)

- So if the measures are probability measures then $P'(\mathcal{X}) = P(\mathcal{X}) = 1$, and we get back standard KL-divergence.

- If not probability measures, $D(P \| P')$ could go negative, but not $\delta(\cdot, \cdot)$.
Theorem 25.5.1

The 3PP holds in this setting. I.e., let \(\mathcal{P} \) be convex sets of measures, \(Q_0 \) be another measure on \((X, \mathcal{X})\). Then if \(Q_0 \xrightarrow{1} P_1 \), then we have

\[
D(P||P_1) + P_1(X) - P(X) + D(P_1||Q_0) \leq D(P||Q_0)
\]

(25.77)

Proof.

- By definition, \(D(P_1||Q_0) = D(\mathcal{P}||Q_0) < \infty \).
Theorem 25.5.1

The 3PP holds in this setting. I.e., let \mathcal{P} be convex sets of measures, Q_0 be another measure on (X, \mathcal{X}). Then if $Q_0 \xrightarrow{1} P_1$, then we have

$$D(P||P_1) + P_1(X) - P(X) + D(P_1||Q_0) \leq D(P||Q_0) \quad (25.77)$$

Proof.

- By definition, $D(P_1||Q_0) = D(\mathcal{P}||Q_0) < \infty$.
- Assume $D(P||Q_0) < \infty$ since otherwise we get the inequality immediately.
Theorem 25.5.1

The 3PP holds in this setting. I.e., let \(\mathcal{P} \) be convex sets of measures, \(Q_0 \) be another measure on \((X, \mathcal{X}) \). Then if \(Q_0 \xrightarrow{1} P_1 \), then we have

\[
D(P \| P_1) + P_1(X) - P(X) + D(P_1 \| Q_0) \leq D(P \| Q_0)
\] (25.77)

Proof.

- By definition, \(D(P_1 \| Q_0) = D(\mathcal{P} \| Q_0) < \infty \).
- Assume \(D(P \| Q_0) < \infty \) since otherwise we get the inequality immediately. Next, define

\[
p_1 = \frac{dP_1}{dQ_0}, \text{ and } p = \frac{dP}{dQ_0}
\] (25.78)

so that \(P_1 = \int p_1 dQ_0 \) and \(P = \int p dQ_0 \)

...
3PP KL

Proof.

- Form \(P_\alpha = (1 - \alpha)P + \alpha P_1 \) as a convex combination of \(P \) and \(P_1 \)
3PP KL

Proof.

- Form $P_\alpha = (1 - \alpha)P + \alpha P_1$ as a convex combination of P and P_1
- and then $f(\alpha) \triangleq D(P_\alpha \| Q_0)$ so

\[
f(1) = D(P_1 \| Q_0) < D(P_\alpha \| Q_0) = f(\alpha)
\]

(25.79)

since $Q_0 \xrightarrow{2} P_1$.

3PP KL

Proof.

- Form $P_\alpha = (1 - \alpha)P + \alpha P_1$ as a convex combination of P and P_1 and then $f(\alpha) \triangleq D(P_\alpha \| Q_0)$ so

$$f(1) = D(P_1 \| Q_0) < D(P_\alpha \| Q_0) = f(\alpha) \quad (25.79)$$

since $Q_0 \xrightarrow{2} P_1$.

- Thus,

$$0 \geq \frac{f(1) - f(\alpha)}{1 - \alpha} = \frac{1}{1 - \alpha} \left[\int dP_1 \log \frac{dP_1}{dQ_0} - \int dP_\alpha \log \frac{dP_\alpha}{dQ_0} \right] \quad (25.80)$$

$$= \frac{1}{1 - \alpha} \left[\int p_1 dQ_0 \log \frac{dP_1}{dQ_0} - \int p_\alpha dQ_0 \log \frac{dP_\alpha}{dQ_0} \right] \quad (25.81)$$

$$= \frac{1}{1 - \alpha} \left[\int (p_1 \log p_1 - p_\alpha \log p_\alpha) dQ_0 \right] \quad (25.82)$$
Proof.

- It can be shown that this is non-increasing as $\alpha \uparrow 1$.
Proof.

- It can be shown that this is non-increasing as $\alpha \uparrow 1$.

- Moreover, since $p_\alpha \log p_\alpha$ is convex, we can find the max of the above by taking derivatives, but the derivative is what happens when $\alpha \uparrow 1$.

By certain technical reasons, we can exchange the limit (or really derivative) and the integral to get:

$$0 \geq \int\limits_0^1 \frac{d}{d\alpha} (p_\alpha \log p_\alpha) \bigg|_{\alpha=1} dQ_0 = \int (1 + \log p_1) (p_1 - p) dQ_0 + p_1 \log p_1 dQ_0 - p \log p_1 dQ_0 \quad (25.84)$$

From this, the results follow using definitions of p_1 and $p_\cdot \cdot \cdot$.
3PP KL

Proof.

• It can be shown that this is non-increasing as $\alpha \uparrow 1$.

• Moreover, since $p_\alpha \log p_\alpha$ is convex, we can find the max of the above by taking derivatives, but the derivative is what happens when $\alpha \uparrow 1$. That is,

$$\lim_{\alpha \uparrow 1} (\text{quantity}) = \frac{d}{d\alpha} (\text{quantity}) \bigg|_{\alpha=1} \quad (25.83)$$

By certain technical reasons, we can exchange the limit (or really derivative) and the integral to get:

$$0 \geq \int \frac{d}{d\alpha} (p_\alpha \log p_\alpha) \bigg|_{\alpha=1} dQ_0 = \int (1 + \log p_1) (p_1 - p) dQ_0$$

$$= \int p_1 dQ_0 - p dQ_0 + p_1 \log p_1 dQ_0 - p \log p_1 dQ_0 \quad (25.84)$$

From this, the results follow using definitions of p_1 and p_α. . .
3PP KL

Proof.

- It can be shown that this is non-increasing as $\alpha \uparrow 1$.
- Moreover, since $p_\alpha \log p_\alpha$ is convex, we can find the max of the above by taking derivatives, but the derivative is what happens when $\alpha \uparrow 1$. That is,

$$\lim_{\alpha \uparrow 1} (\text{quantity}) = \frac{d}{d\alpha} (\text{quantity}) \bigg|_{\alpha=1} \quad (25.83)$$

- By certain technical reasons, we can exchange the limit (or really derivative) and the integral to get:

$$0 \geq \int \frac{d}{d\alpha} (p_\alpha \log p_\alpha) \big|_{\alpha=1} dQ_0 = \int (1 + \log p_1)(p_1 - p) dQ_0 \quad (25.84)$$

$$= \int p_1 dQ_0 - pdQ_0 + p_1 \log p_1 dQ_0 - p \log p_1 dQ_0 \quad (25.85)$$
Proof.

- It can be shown that this is non-increasing as $\alpha \uparrow 1$.
- Moreover, since $p_\alpha \log p_\alpha$ is convex, we can find the max of the above by taking derivatives, but the derivative is what happens when $\alpha \uparrow 1$. That is,

$$
\lim_{\alpha \uparrow 1} (\text{quantity}) = \frac{d}{d\alpha} (\text{quantity}) \bigg|_{\alpha=1} \tag{25.83}
$$

- By certain technical reasons, we can exchange the limit (or really derivative) and the integral to get:

$$
0 \geq \int \frac{d}{d\alpha} (p_\alpha \log p_\alpha) \big|_{\alpha=1} dQ_0 = \int (1 + \log p_1)(p_1 - p) dQ_0 \tag{25.84}
$$

$$
= \int p_1 dQ_0 - p dQ_0 + p_1 \log p_1 dQ_0 - p \log p_1 dQ_0 \tag{25.85}
$$
4PP KL

Theorem 25.5.2

Let Q be a convex set of measures and let P_1 be a measure on (X, \mathcal{X}), then $P_1 \xrightarrow{1} Q_1$ yields

\[
D(P\|Q_1) \leq D(P\|P_1) + P_1(X) - P(X) + D(P\|Q) \quad (25.86)
\]
\[
d(P, Q_1) \leq \delta(P, P_1) + d(P, Q) \quad (25.87)
\]

for all P on (X, \mathcal{X}) and for all $Q \in Q$.

- So 4PP holds as well (proof skipped) so 5PP holds in this case as we..
Theorem 25.5.3

Let \(P, Q \) be convex sets of measures on \((X, \mathcal{X})\) with \(\{(P_n, Q_n)\}_{n=0}^{\infty} \) be sequences from \(P, Q \) obtained from alternating minimization of \(d(P, Q) = D(P||Q) \), starting from \(P_0 \in P \), then we have that

\[
\lim_{n \to \infty} D(P_n||Q_n) = D(P_0||Q) \tag{25.88}
\]

where

\[
P_0 = \{ P : D(P||Q_n) < \infty \text{ for some } n \} \tag{25.89}
\]

Also, if \(X \) is a finite set (plus a few other minor technical conditions) then \(P_n \to P^* \) where \(D(P^*||Q) = D(P_0||Q) \).
A main theorem (continued)

Moreover, if \(X \) is finite, and \(P_0 \) is positive for \(x \in X \) such that \(\exists P \in \mathcal{P}, Q \in \mathcal{Q} \) with \(P(x)Q(x) > 0 \) (simultaneously positive on \(X \)), then \(\mathcal{P}_0 = \{ P : D(P\|Q) < \infty \} \) so that \(D(\mathcal{P}_0\|Q) = D(\mathcal{P}\|Q) \) and we get the sequence independent minimum (i.e., \(\mathcal{P}_0 \) no longer depends on the sequence).
A main theorem (continued)

Moreover, if X is finite, and P_0 is positive for $x \in X$ such that
$\exists P \in \mathcal{P}, Q \in \mathcal{Q}$ with $P(x)Q(x) > 0$ (simultaneously positive on X),
then $\mathcal{P}_0 = \{P : D(P||Q) < \infty\}$ so that $D(\mathcal{P}_0||Q) = D(\mathcal{P}||Q)$ and
we get the sequence independent minimum (i.e., \mathcal{P}_0 no longer
depends on the sequence).

Bottom line: when you implement this, make sure to initialize each
distribution to strictly positive values.
Moreover, if X is finite, and P_0 is positive for $x \in X$ such that
$\exists P \in \mathcal{P}, Q \in \mathcal{Q}$ with $P(x)Q(x) > 0$ (simultaneously positive on X),
then $\mathcal{P}_0 = \{P : D(P\|Q) < \infty\}$ so that $D(\mathcal{P}_0\|Q) = D(\mathcal{P}\|Q)$ and
we get the sequence independent minimum (i.e., \mathcal{P}_0 no longer
depends on the sequence).

Bottom line: when you implement this, make sure to initialize each
distribution to strictly positive values.

How to know when to stop in practice?
A main theorem (continued)

Moreover, if X is finite, and P_0 is positive for $x \in X$ such that
\[\exists P \in \mathcal{P}, Q \in \mathcal{Q} \text{ with } P(x)Q(x) > 0 \] (simultaneously positive on X),
then $\mathcal{P}_0 = \{ P : D(P \| Q) < \infty \}$ so that $D(\mathcal{P}_0 \| Q) = D(\mathcal{P} \| Q)$ and we get the sequence independent minimum (i.e., \mathcal{P}_0 no longer depends on the sequence).

Bottom line: when you implement this, make sure to initialize each distribution to strictly positive values.

How to know when to stop in practice?

Can we bound $D(P_n \| Q_n) − D(\mathcal{P}_0 \| Q)$?
A main theorem (continued)

Moreover, if X is finite, and P_0 is positive for $x \in X$ such that
$\exists P \in \mathcal{P}, Q \in \mathcal{Q}$ with $P(x)Q(x) > 0$ (simultaneously positive on X),
then $\mathcal{P}_0 = \{ P : D(P||Q) < \infty \}$ so that $D(\mathcal{P}_0||Q) = D(\mathcal{P}||Q)$ and
we get the sequence independent minimum (i.e., \mathcal{P}_0 no longer
depends on the sequence).

Bottom line: when you implement this, make sure to initialize each
distribution to strictly positive values.

How to know when to stop in practice?

Can we bound $D(P_n||Q_n) - D(\mathcal{P}_0||Q)$?

If $D(P||Q) = D(\mathcal{P}_0||Q)$ then from 5PP we get

$$D(\mathcal{P}_0||Q) + D(P||Q_{n-1}) \geq D(P||Q_n) + D(P_n||Q_n) \quad (25.90)$$
This implies that

\[
D(P_n \| Q_n) - D(P_0 \| Q) \leq D(P \| Q_{n-1}) - D(P \| Q_n)
\]

(25.91)

\[
= \int \log \frac{dQ_n}{dQ_{n-1}} dP
\]

(25.92)

\[
\leq \log \sup_x \frac{dQ_n(x)}{dQ_{n-1}(x)} \to 0
\]

(25.93)

if the sequence has a limit (i.e., is convergent) so that it does not change from iteration to iteration.
A main theorem (continued)

- This implies that

\[D(P_n \| Q_n) - D(P_0 \| Q) \leq D(P \| Q_{n-1}) - D(P \| Q_n) \] \hspace{1cm} (25.91)

\[= \int \log \frac{dQ_n}{dQ_{n-1}} dP \] \hspace{1cm} (25.92)

\[\leq \log \sup_x \frac{dQ_n(x)}{dQ_{n-1}(x)} \rightarrow 0 \] \hspace{1cm} (25.93)

if the sequence has a limit (i.e., is convergent) so that it does not change from iteration to iteration.

- Thus we can upper bound how close we are to convergence by looking at ratios of successive measures.
Practical Considerations

- In general, one is not guaranteed that each minimization will be easy but for alternating minimization on KL-divergence, it is (as we have already seen for both rate-distortion theory and channel capacity).
Practical Considerations

- In general, one is not guaranteed that each minimization will be easy but for alternating minimization on KL-divergence, it is (as we have already seen for both rate-distortion theory and channel capacity).

- Also, in machine learning, the “measure propagation” algorithm, and the “label propagation” algorithm for semi-supervised learning can be seen to satisfy all of the above properties, and so the convergence holds there as well.
Next time, we’ll start looking at complexity measures in general, and begin our discussion of alternative complexity measures (including Kolmogorov or algorithmic complexity).