Logistics

Review

Announcements, Assignments, and Reminders

- Please do use our discussion board (https://catalyst.uw.edu/gopost/board/bilmes/29948/) for all questions, comments, so that all will benefit from them being answered.

- I’ll likely be gone the week of Dec 3rd-7th. Hence, we’ll most likely have two extra lectures the following week (during finals week). More details TBA.
Cumulative Outstanding Reading

- Read Tom McCormick's overview paper on SFM http://people.commerce.ubc.ca/faculty/mccormick/sfmchap8a.pdf
- Read chapters 1 - 3 from Fujishige book.
- Read over lecture slides, all posted on our web page (http://j.ee.washington.edu/~bilmes/classes/ee596a_fall_2012/).
- See the summary slide at the end for lectures for additional reading sources.
First, a bit on $D(y)$

Recall the definition of the set of tight sets at $y \in P_f^+$:

$$D(y) \triangleq \{ A : A \subseteq E, y(A) = f(A) \}$$

(10.9)

Theorem 10.2.6

For any $y \in P_f^+$, with f a polymatroid function, then $D(y)$ is closed under union and intersection.

Proof.

We have already proven this as part of Theorem 10.3.6

Also recall the definition of $\text{sat}(y)$, the maximal set of tight elements relative to $y \in \mathbb{R}_E^+$.

$$\text{sat}(y) \overset{\text{def}}{=} \bigcup \{ T : T \in D(y) \}$$

(10.10)

Polymatroidal polyhedron and greedy

- What is the greedy solution in this setting?
- Sort elements of E w.r.t. w so that, w.l.o.g.
 $$E = (e_1, e_2, \ldots, e_m) \text{ with } w(e_1) \geq w(e_2) \geq \cdots \geq w(e_m).$$
- Let $k + 1$ be the first point (if any) at which we are non-positive, i.e., $w(e_k) > 0$ and $0 \geq w(e_{k+1})$.

 That is, we have
 $$w(e_1) \geq w(e_2) \geq \cdots \geq w(e_k) > 0 \geq w(e_{k+1}) \geq \cdots \geq w(e_m)$$
 (10.1)

- Next define partial accumulated sets E_i, for $i = 0 \ldots m$, we have w.r.t. the above sorted order:
 $$E_i \overset{\text{def}}{=} \{ e_1, e_2, \ldots, e_i \}$$
 (10.3)

 (note $E_0 = \emptyset$, $f(E_0) = 0$, and E and E_i is always sorted w.r.t w).
- The greedy solution is the vector $x \in \mathbb{R}_E^+$ with elements defined as:
 $$x(e_1) \overset{\text{def}}{=} f(E_1) = f(e_1) = f(e_1|E_0) = f(e_1|\emptyset)$$
 (10.4)

 $$x(e_i) \overset{\text{def}}{=} 0 \text{ for } i = k + 1 \ldots m = |E|$$
 (10.6)
Theorem 10.2.1

The vector $x \in \mathbb{R}_+^E$ as previously defined using the greedy algorithm maximizes wx over P_f.

Proof.

- Consider the LP strong duality equation:

$$\max(wx : x \in P_f) = \min \left(\sum_{A \subseteq E} y_A f(A) : y \in \mathbb{R}_+^{2^E}, \sum_{A \subseteq E} y_A 1_A \geq w \right)$$

(10.1)

- Define the following vector $y \in \mathbb{R}_+^{2^E}$ as

$$y_{E_i} \overset{\text{def}}{=} w(e_i) - w(e_{i+1}) \text{ for } i = 1 \ldots (m - 1),$$

(10.2)

$$y_E \overset{\text{def}}{=} w(e_m), \text{ and}$$

(10.3)

$$y_A = 0 \text{ otherwise} \quad (10.4)$$

Conversely, suppose P_f^+ is a polytope of form

$$P_f^+ = \{x \in \mathbb{R}_+^E : x(A) \leq f(A), \forall A \subseteq E\},$$

then the greedy solution to

$$\max(wx : x \in P)$$

is optimum only if f is submodular.

Proof.

- Order elements of E arbitrarily as (e_1, e_2, \ldots, e_m) and define $E_i = (e_1, e_2, \ldots, e_i)$.

- For $1 \leq p \leq q \leq m$, define $A = \{e_1, e_2, \ldots, e_k, e_{k+1}, \ldots, e_p\} = E_p$ and $B = \{e_1, e_2, \ldots, e_k, e_{p+1}, \ldots, e_q\} = E_k \cup (E_q \setminus E_p)$.

- Note, then we have $A \cap B = \{e_1, \ldots, e_k\} = E_k$, and $A \cup B = E_q$.

- Define $w \in \{0, 1\}^m$ as:

$$w \overset{\text{def}}{=} \sum_{i=1}^q 1_{e_i} = 1_{A \cup B} \quad (10.1)$$

- Suppose optimum solution x is given by the greedy procedure.
Polymatroidal polyhedron and greedy

Thus, restating the above results into a single complete theorem, we have a result very similar to what we saw for matroids (i.e., Theorem 7.3.1)

Theorem 10.2.1

If \(f : 2^E \to \mathbb{R}_+ \) is given, and \(P \) is a polytope in \(\mathbb{R}_+^E \) of the form

\[
P = \left\{ x \in \mathbb{R}_+^E : x(A) \leq f(A), \forall A \subseteq E \right\},
\]

then the greedy solution to the problem \(\max(\mathbf{w}^T x : x \in P) \) is \(\forall \mathbf{w} \) optimum iff \(f \) is monotone non-decreasing submodular (i.e., iff \(P \) is a polymatroid).

Multiple Polytopes associated with arbitrary \(f \)

\[
P_f^+ = P_f \cap \{ x \in \mathbb{R}^E : x \geq 0 \} \quad (10.5)
\]

\[
P_f = \{ x \in \mathbb{R}^E : x(S) \leq f(S), \forall S \subseteq E \} \quad (10.6)
\]

\[
B_f = P_f \cap \{ x \in \mathbb{R}^E : x(E) = f(E) \} \quad (10.7)
\]
Polymatroid extreme points

Theorem 10.2.1

For a given ordering $E = (e_1, \ldots, e_m)$ of E and a given E_i and x generated by E_i using the greedy procedure, then x is an extreme point of P_f

Proof.

- We already saw that $x \in P_f$ (Theorem 10.2.1).
- To show that x is an extreme point of P_f, note that it is the unique solution of the following system of equations

\[
x(E_j) = f(E_j) \text{ for } 1 \leq j \leq i \leq m \quad (10.9)
\]

\[
x(e) = 0 \text{ for } e \in E \setminus E_i \quad (10.10)
\]

There are $i \leq m$ equations and $i \leq m$ unknowns, and simple Gaussian elimination gives us back the x constructed via the Greedy algorithm!!
Logistics

Polymatroid with labeled edge lengths

- Recall $f(e|A) = f(A + e) - f(A)$
- Notice how submodularity, $f(e|B) \leq f(e|A)$ for $A \subseteq B$, defines the shape of the polytope.
- In fact, we have strictness here $f(e|B) < f(e|A)$ for $A \subset B$.
- Also, consider how the greedy algorithm proceeds along the edges of the polytope.
Intuition: why greedy works with polymatroids

- Given w, the goal is to find $x = (x(e_1), x(e_2))$ that maximizes $x^T w = x(e_1) w(e_1) + x(e_2) w(e_2)$.
- If $w(e_2) > w(e_1)$ the upper extreme point indicated maximizes $x^T w$ over $x \in P_f^+$.
- If $w(e_2) < w(e_1)$ the lower extreme point indicated maximizes $x^T w$ over $x \in P_f^+$.

Polymatroid with labeled edge lengths

- Recall $f(e|A) = f(A + e) - f(A)$
- Notice how submodularity, $f(e|B) \leq f(e|A)$ for $A \subseteq B$, defines the shape of the polytope.
- In fact, we have strictness here $f(e|B) < f(e|A)$ for $A \subset B$.
- Also, consider how the greedy algorithm proceeds along the edges of the polytope.
A polymatroid function’s polyhedron is a polymatroid.

Theorem 10.3.6

Let f be a polymatroid function defined on subsets of E. For any $x \in \mathbb{R}^E_+$, and any P_f^+-basis $y^x \in \mathbb{R}^E$ of x, the component sum of y^x is

$$y^x(E) = \text{rank}(x) = \max \left(y(E) : y \leq x, y \in P_f^+ \right)$$

$$= \min \left(x(A) + f(E \setminus A) : A \subseteq E \right) \quad (10.1)$$

As a consequence, P_f^+ is a polymatroid, since r.h.s. is constant w.r.t. y^x.

By taking elements $E \setminus A$ to be zero in x, we can define/recover the submodular function from the polymatroid polyhedron via the following:

$$f(A) = \max \left\{ y(A) : y \in P_f^+ \right\} \quad (10.2)$$

In fact, we will ultimately see a number of important consequences of this theorem (other than just that P_f^+ is a polymatroid).
Considering Theorem 10.3.6, the matroid case is now a special case, where we have that:

Corollary 10.3.8

We have that:

\[
\max \{ y(E) : y \in P_{\text{ind. set}}(M), y \leq x \} = \min \{ r_M(A) + x(E \setminus A) : A \subseteq E \}
\]

(10.27)

where \(r_M \) is the matroid rank function of some matroid.

Consider

\[
P_r^+ = \{ x \in \mathbb{R}^E : x \geq 0, x(A) \leq r_M(A), \forall A \subseteq E \}
\]

(10.1)

Suppose we have any \(x \in \mathbb{R}_+^E \) such that \(x \not\in P_r^+ \).

Hence, there must be a set of \(\mathcal{W} \subseteq 2^V \), each member of which corresponds to a violated inequality, i.e., equations of the form \(x(A) > r_M(A) \) for \(A \in \mathcal{W} \).

The most violated inequality when \(x \) is considered w.r.t. \(P_r^+ \) corresponds to the set \(A \) that maximizes \(x(A) - r_M(A) \), i.e., the most violated inequality is valued as:

\[
\max \{ x(A) - r_M(A) : A \in \mathcal{W} \} = \max \{ x(A) - r_M(A) : A \subseteq E \}
\]

(10.2)

Since \(x \) is modular and \(x(E \setminus A) = x(E) - x(A) \), we can express this via a min as in::

\[
\min \{ r_M(A) + x(E \setminus A) : A \subseteq E \}
\]

(10.3)
Consider

\[P_f^+ = \{ x \in \mathbb{R}^E : x \geq 0, x(A) \leq f(A), \forall A \subseteq E \} \]

(10.4)

Suppose we have any \(x \in \mathbb{R}^E_+ \) such that \(x \not\in P_f^+ \).

Hence, there must be a set of \(\mathcal{W} \subseteq 2^V \), each member of which corresponds to a violated inequality, i.e., equations of the form \(x(A) > r_M(A) \) for \(A \in \mathcal{W} \).

The most violated inequality when \(x \) is considered w.r.t. \(P_f^+ \) corresponds to the set \(A \) that maximizes \(x(A) - f(A) \), i.e., the most violated inequality is valuated as:

\[
\max \{ x(A) - f(A) : A \in \mathcal{W} \} = \max \{ x(A) - f(A) : A \subseteq E \} \tag{10.5}
\]

Since \(x \) is modular and \(x(E \setminus A) = x(E) - x(A) \), we can express this via a min as in:

\[
\min \{ f(A) + x(E \setminus A) : A \subseteq E \} \tag{10.6}
\]

More importantly, \(\min \{ f(A) + x(E \setminus A) : A \subseteq E \} \) a form of submodular function minimization, namely \(\min \{ f(A) - x(A) : A \subseteq E \} \) for a submodular function consisting of a difference of polymatroid and modular function (so no longer necessarily monotone, nor positive).
Matroids, other definitions using matroid rank $r : 2^V \rightarrow \mathbb{Z}_+$

Definition 10.4.6 (closed/flat/subspace)

A subset $A \subseteq E$ is **closed** or a **flat** or a **subspace** of matroid M if for all $x \in E \setminus A$, $r(A \cup \{x\}) = r(A) + 1$.

Definition 10.4.7 (closure)

Given $A \subseteq E$, the **closure** (or span) of A, is defined by
definitionn\[##\text{span}(A) = \{b \in E : r(A \cup \{b\}) = r(A)\}##.\]

Therefore, a closed set A has $\text{span}(A) = A$.

Definition 10.4.8 (circuit)

A subset $A \subseteq E$ is **circuit** or a **cycle** if it is an inclusionwise minimally dependent set (i.e., if $r(A) < |A|$ and for any $a \in A$, $r(A \setminus \{a\}) = |A| - 1$).

In general, besides independent sets and rank functions, there are other equivalent ways to characterize matroids.

Matroids by circuits

A set is independent if and only if it contains no circuit. Therefore, it is not surprising that circuits can also characterize a matroid.

Theorem 10.4.6 (Matroid by circuits)

Let E be a set and \mathcal{C} be a collection of nonempty subsets of E, such that no two sets in \mathcal{C} are contained in each other. Then the following are equivalent.

1. \mathcal{C} is the collection of circuits of a matroid;
2. if $C, C' \in \mathcal{C}$, and $x \in C \cap C'$, then $(C \cup C') \setminus \{x\}$ contains a set in \mathcal{C};
3. if $C, C' \in \mathcal{C}$, and $x \in C \cap C'$, and $y \in C \setminus C'$, then $(C \cup C') \setminus \{x\}$ contains a set in \mathcal{C} containing y;

Again, think about this for a moment in terms of linear spaces and matrices, and spanning trees.
Lemma 10.4.1

Let $I \in \mathcal{I}(M)$, and $e \in E$, then $I \cup \{e\}$ contains at most one circuit in M.

Proof.

- Suppose, to the contrary, that there are two distinct circuits C_1, C_2 such that $C_1 \cup C_2 \subseteq I \cup \{e\}$.
- Then $e \in C_1 \cap C_2$, and by (C2), there is a circuit C_3 of M s.t. $C_3 \subseteq (C_1 \cup C_2) \setminus \{e\} \subseteq I$.
- This contradicts the independence of I.

Define $C(I, e)$ be the unique circuit associated with $I \cup \{e\}$ (the fundamental circuit in M w.r.t. I and e, if it exists).

If $e \in \text{span}(I) \setminus I$, then $C(I, e)$ is well defined ($I + e$ creates one circuit).

If $e \in I$, then $I + e = I$ doesn’t create a circuit. In such cases, $C(I, e)$ is not really defined.

In such cases, we define $C(I, e) = \{e\}$, and we will soon see why.

If $e \notin \text{span}(I)$, then $C(I, e) = \emptyset$, since no circuit is created in this case.
Lemma 10.4.2

Let $\mathcal{B}(C)$ be the set of bases of C. Then, given matroid $\mathcal{M} = (E, \mathcal{I})$, and any set $C \subseteq E$, we have that:

$$
\bigcup_{B \in \mathcal{B}(C)} B = C.
$$

(10.7)

Proof.

- Define $C' \triangleq \bigcup_{B \in \mathcal{B}(C)}$, and suppose $\exists c \in C$ such that $c \notin C'$.
- Hence, $\forall B \in \mathcal{B}(C)$ we have $c \not\in B$, and $B + c$ contains a single circuit for any B, namely $C(B, c)$.
- Then choose $c' \in C(B, c)$ with $c' \neq c$.
- Then $B + c - c'$ is independent size $|B|$ subset of C and hence spans C, and thus is a c-containing member of $\mathcal{B}(C)$, contradicting $c \notin C'$.

The sat function = Polymatroid Closure

- Thus, in a matroid, closure (span) of a set A are all items that A spans (eq. that depend on A).
- We wish to generalize closure to polymatroids.
- Consider $x \in P_f$ for polymatroid function f.
- Again, recall, tight sets are closed under union and intersection, and therefore form a distributive lattice.
- That is, we saw in Lecture 7 that for any $A, B \in \mathcal{D}(x)$, we have that $A \cup B \in \mathcal{D}(x)$ and $A \cap B \in \mathcal{D}(x)$, which can constitute a join and meet.
- Recall, for a given $x \in P_f$, we have defined this tight family as

$$
\mathcal{D}(x) = \{ A : A \subseteq E, x(A) = f(A) \}
$$

(10.8)
The \(sat \) function = Polymatroid Closure

- Now given \(x \in P_f^+ \):

\[
D(x) = \{ A : A \subseteq E, x(A) = f(A) \} \\
= \{ A : f(A) - x(A) = 0 \}
\]

(10.9)

(10.10)

- Since \(x \in P_f^+ \) and \(f \) is presumed to be polymatroid function, we see \(f'(A) = f(A) - x(A) \) is a non-negative submodular function, and \(D(x) \) are the zero-valued minimizers (if any) if \(f'(A) \).

- The zero-valued minimizers of \(f' \) are thus closed under union and intersection.

- In fact, this is true for all minimizers of a submodular function as stated in the next theorem.

Minimizers of a Submodular Function form a lattice

Theorem 10.5.1

For arbitrary submodular \(f \), the minimizers are closed under union and intersection. That is, let \(M = \arg\min_{X \subseteq E} f(X) \) be the set of minimizers of \(f \). Let \(A, B \in M \). Then \(A \cup B \in M \) and \(A \cap B \in M \).

Proof.

Since \(A \) and \(B \) are minimizers, we have \(f(A) = f(B) \leq f(A \cap B) \) and \(f(A) = f(B) \leq f(A \cup B) \).

By submodularity, we have

\[
f(A) + f(B) \geq f(A \cup B) + f(A \cap B)
\]

(10.11)

Hence, we must have \(f(A) = f(B) = f(A \cup B) = f(A \cap B) \).

Thus, the minimizers of a submodular function form a lattice, and there is a maximal and a minimal minimizer of every submodular function.
The sat function = Polymatroid Closure

- Matroid closure is generalized by the unique maximal element in $D(x)$, also called the polymatroid closure or sat (saturation function).
- For some $x \in P_f$, we have defined:
 \[\text{cl}(x) \defeq \text{sat}(x) \defeq \bigcup \{ A : A \in D(x) \} \]
 \[= \bigcup \{ A : A \subseteq E, x(A) = f(A) \} \]
 \[= \{ e : e \in E, \forall \alpha > 0, x + \alpha 1_e \notin P_f \} \] (10.14)

- Hence, sat(x) is the maximal minimizer of the submodular function $f_x(A) \triangleq f(A) - x(A)$.
- Eq. (10.14) says that sat consists of any point x that is P_f saturated (any additional positive movement, in that dimension, leaves P_f). We’ll revisit this in a few slides.
- First, we see how sat generalizes matroid closure.

Consider matroid $(E, \mathcal{I}) = (E, r)$, some $I \in \mathcal{I}$. Then $1_I \in P_r$ and

\[D(1_I) = \{ A : 1_I(A) = r(A) \} \] (10.15)

and

\[\text{sat}(1_I) = \bigcup \{ A : A \subseteq E, A \in D(1_I) \} \] (10.16)
\[= \bigcup \{ A : A \subseteq E, 1_I(A) = r(A) \} \] (10.17)
\[= \bigcup \{ A : A \subseteq E, |I \cap A| = r(A) \} \] (10.18)

- Notice that $1_I(A) = |I \cap A|$.
- Intuitively, $|I \cap A| \leq |I|$. Also, consider an $A \supset I \in \mathcal{I}$ that doesn’t increase rank, meaning $r(A) = r(I)$. If $r(A) = |I \cap A|$ then A is in I’s span.
- We formalize this next.
Lemma 10.5.2 (Matroid: \(\mathbb{R}^E_+ \to 2^E \) is the same as closure.)

For \(I \in \mathcal{I} \), we have \(\text{sat}(1_I) = \text{span}(I) \) \hspace{1cm} (10.19)

Proof.
- For \(A = I \), \(1_I(I) = |I| = r(I) \), so \(I \in \mathcal{D}(1_I) \) and \(I \subseteq \text{sat}(1_I) \).
 Also, \(I \subseteq \text{span}(I) \).
- Consider some \(b \in \text{span}(I) \setminus I \).
- Then \(A = I \cup \{b\} \in \mathcal{D}(1_I) \) since \(1_I(I \cup \{b\}) = |I| = r(I \cup \{b\}) = r(I) \).
- Thus, \(b \in \text{sat}(1_I) \).
- Therefore, \(\text{sat}(1_I) \supseteq \text{span}(I) \).

... proof continued.

- Now, consider \(b \in \text{sat}(1_I) \setminus I \).
- Choose any \(A \in \mathcal{D}(1_I) \) with \(b \in A \).
- Then \(|A \cap I| = r(A) \).
- Now \(r(A) = |A \cap I| \leq |I| = r(I) \).
- Also, \(r(A \cap I) = |A \cap I| \) since \(A \cap I \in \mathcal{I} \).
- Hence, \(r(A \cap I) = r(A) = r((A \cap I) \cup (A \setminus I)) \) meaning \((A \setminus I) \subseteq \text{span}(A \cap I) \subseteq \text{span}(I) \).
- Since \(b \in A \setminus I \), \(b \in \text{span}(I) \).
- Thus, \(\text{sat}(1_I) \subseteq \text{span}(I) \).
- Hence \(\text{sat}(1_I) = \text{span}(I) \).
The sat function = Polymatroid Closure

- Now, consider a matroid (E, r) and some $C \subseteq E$ with $C \notin \mathcal{I}$, and consider 1_C. Is $1_C \in P_r$? No, it might not be a vertex, or even a member, of P_r.
- $\text{span}(\cdot)$ operates on more than just independent sets, so $\text{span}(C)$ is perfectly sensible.
- Note $\text{span}(C) = \text{span}(B)$ where $B \subseteq B(C)$ is a base of C.
- Then we have $1_B \leq 1_C \leq 1_{\text{span}(C)}$, and that $1_B \in P_r$. We can then make the definition:

$$\text{sat}(1_C) \triangleq \text{sat}(1_B) \text{ for } B \in B(C)$$ \hfill (10.20)

In which case, we also get $\text{sat}(1_C) = \text{span}(C)$ (in general, could define $\text{sat}(y) = \text{sat}(\text{P-basis}(y))$).
- However, consider the following form

$$\text{sat}(1_C) = \bigcup \{A : A \subseteq E, |A \cap C| = r(A)\}$$ \hfill (10.21)

Exercise: is $\text{span}(C) = \text{sat}(1_C)$? Prove or disprove it.

The sat function, span, and submodular function minimization

- Thus, for a matroid, $\text{sat}(1_I)$ is exactly the closure (or span) of I in the matroid. i.e., for matroid (E, r), we have $\text{span}(I) = \text{sat}(1_B)$.
- Recall, for $x \in P_f$ and polymatroidal f, $\text{sat}(x)$ is the maximal (by inclusion) minimizer of $f(A) - x(A)$, and thus in a matroid, $\text{span}(I)$ is the maximal minimizer of the submodular function formed by $r(A) - 1_I(A)$.
- Submodular function minimization can solve “span” queries in a matroid or “sat” queries in a polymatroid.
- In general, given polymatroid function $f : 2^V \rightarrow \mathbb{R}$, there exists a form of span in that, given A, we wish to find the largest set B such that $f(B \cup A) = f(A)$.
- Find largest minimizer of $g : 2^{V \setminus A} \rightarrow \mathbb{R}$ with $g(B) = f(B | A)$.
 Exercise: give example of greedy failing here.
sat, as tight polymatroidal elements

- We are given an $x \in P_f^+$ for submodular function f.
- Recall that for such an x, sat(x) is defined as
 \[\text{sat}(x) = \bigcup \{ A : x(A) = f(A) \} \] \hspace{1cm} (10.22)
- We also have seen that sat(x) can be defined as:
 \[\text{sat}(x) = \left\{ e : \forall \alpha > 0, x + \alpha 1_e \notin P_f^+ \right\} \] \hspace{1cm} (10.23)
- We next show more formally that these are the same.

Let's start with one definition and derive the other.

\[\text{sat}(x) \overset{\text{def}}{=} \left\{ e : \forall \alpha > 0, x + \alpha 1_e \notin P_f^+ \right\} \] \hspace{1cm} (10.24)
\[= \left\{ e : \forall \alpha > 0, \exists A \text{ s.t. } (x + \alpha 1_e)(A) > f(A) \right\} \] \hspace{1cm} (10.25)
\[= \left\{ e : \forall \alpha > 0, \exists A \ni e \text{ s.t. } x(A) + \alpha > f(A) \right\} \] \hspace{1cm} (10.26)

This last bit follows since $1_e(A) = 1 \iff e \in A$. Continuing, we get
\[\text{sat}(x) = \left\{ e : \forall \alpha > 0, \exists A \ni e \text{ s.t. } x(A) + \alpha > f(A) \right\} \] \hspace{1cm} (10.27)

- given that $x \in P_f^+$, meaning $x(A) \leq f(A)$ for all A, we must have
 \[\text{sat}(x) = \left\{ e : \forall \alpha > 0, \exists A \ni e \text{ s.t. } x(A) = f(A) \right\} \] \hspace{1cm} (10.28)
 \[= \left\{ e : \exists A \ni e \text{ s.t. } x(A) = f(A) \right\} \] \hspace{1cm} (10.29)
- So now, if A is any set such that $x(A) = f(A)$, then we clearly have
 \[\forall e \in A, e \in \text{sat}(x), \text{ and therefore that } \text{sat}(x) \supseteq A \] \hspace{1cm} (10.30)
sat, as tight polymatroidal elements

- ...and therefore, with sat as defined in Eq. (10.14),
 \[
 \text{sat}(x) \supseteq \bigcup \{A : x(A) = f(A)\} \quad (10.31)
 \]

- On the other hand, for any \(e \in \text{sat}(x) \) defined as in Eq. (10.29), since \(e \) is itself a tight set, there is a set \(A \ni e \) such that \(x(A) = f(A) \), giving
 \[
 \text{sat}(x) \subseteq \bigcup \{A : x(A) = f(A)\} \quad (10.32)
 \]

- Therefore, the two definitions of sat are identical.

Saturation Capacity

- Another useful concept is saturation capacity which we develop next.
- For \(x \in P_f \), and \(e \in E \), consider finding
 \[
 \max \{\alpha : \alpha \in \mathbb{R}, x + \alpha 1_e \in P_f\} \quad (10.33)
 \]

- This is identical to:
 \[
 \max \{\alpha : (x + \alpha 1_e)(A) \leq f(A), \forall A \ni \{e\}\} \quad (10.34)
 \]
 since any \(B \subseteq E \) such that \(e \notin B \) does not change in a \(1_e \) adjustment, meaning \((x + \alpha 1_e)(B) = x(B) \).
- Again, this is identical to:
 \[
 \max \{\alpha : x(A) + \alpha \leq f(A), \forall A \ni \{e\}\} \quad (10.35)
 \]
 or
 \[
 \max \{\alpha : \alpha \leq f(A) - x(A), \forall A \ni \{e\}\} \quad (10.36)
 \]
Saturation Capacity

- The max is achieved when
 \[\alpha = \hat{c}(x; e) \overset{\text{def}}{=} \min \{ f(A) - x(A), \forall A \supseteq \{e\} \} \] (10.37)
- \(\hat{c}(x; e) \) is known as the saturation capacity associated with \(x \in P_f \) and \(e \).
- Thus we have for \(x \in P_f \),
 \[\hat{c}(x; e) \overset{\text{def}}{=} \min \{ f(A) - x(A), \forall A \ni e \} \] (10.38)
 \[= \max \{ \alpha : \alpha \in \mathbb{R}, x + \alpha e \in P_f \} \] (10.39)
- We immediately see that for \(e \in E \setminus \text{sat}(x) \), we have that \(\hat{c}(x; e) > 0 \).
- Also, for \(e \in \text{sat}(x) \), we have that \(\hat{c}(x; e) = 0 \).
- Note that any \(\alpha \) with \(0 \leq \alpha \leq \hat{c}(x; e) \) we have \(x + \alpha e \in P_f \).
- We also see that computing \(\hat{c}(x; e) \) is a form of submodular function minimization.

Dependence Function

- Tight sets can be restricted to contain a particular element.
- Given \(x \in P_f \), and \(e \in \text{sat}(x) \), define
 \[D(x, e) = \{ A : e \in A \subseteq E, x(A) = f(A) \} \] (10.40)
 \[= D(x) \cap \{ A : A \subseteq E, e \in A \} \] (10.41)
- Thus, \(D(x, e) \subseteq D(x) \), and \(D(x, e) \) is a sublattice of \(D(x) \).
- Therefore, we can define a unique minimal element of \(D(x, e) \) denoted as follows:
 \[\text{dep}(x, e) = \begin{cases} \bigcap \{ A : e \in A \subseteq E, x(A) = f(A) \} & \text{if } e \in \text{sat}(x) \\ \emptyset & \text{else} \end{cases} \] (10.42)
- I.e., \(\text{dep}(x, e) \) is the minimal element in \(D(x) \) that contains \(e \) (the minimal \(x \)-tight set containing \(e \)).
The picture on the right summarizes the relationships between the lattices and sublattices.

Note, \(\bigcap_e \text{dep}(x, e) = \text{dep}(x) \).
An alternate expression for \(\text{dep} = \text{dry} \)

- Now, given \(x \in P_f \), and \(e \in \text{sat}(x) \), recall distributive sub-lattice of \(e \)-containing tight sets \(D(x, e) = \{ A : e \in A, x(A) = f(A) \} \).
- We can define the “1” element of this sub-lattice as:
 \[
 \text{sat}(x, e) \overset{\text{def}}{=} \bigcup \{ A : A \in D(x, e) \}.
 \]
- Analogously, we can define the “0” element of this sub-lattice as:
 \[
 \text{dry}(x, e) \overset{\text{def}}{=} \bigcap \{ A : A \in D(x, e) \}.
 \]
- We can see \(\text{dry}(x, e) \) as the elements that are necessary for \(e \)-containing tightness, with \(e \in \text{sat}(x) \).
- That is, we can view \(\text{dry}(x, e) \) as:
 \[
 \text{dry}(x, e) = \{ e' : x(A) < f(A), \forall A \not\ni e', e \in A \} \quad (10.44)
 \]
- This can be read as, for any \(e' \in \text{dry}(x, e) \), any \(e \)-containing set that does not contain \(e' \) is not tight for \(x \).
- But actually, \(\text{dry}(x, e) = \text{dep}(x, e) \), so we have derived another expression for \(\text{dep}(x, e) \) in Eq. (10.44).

Dependence Function and Fundamental Matroid Circuit

- Now, let \((E, I) = (E, r) \) be a matroid, and let \(I \in I \) giving \(1_I \in P_r \). Let \(e \in \text{sat}(1_I) = \text{span}(I) = \text{closure}(I) \).
- Given \(e \in \text{sat}(1_I) \setminus I \) and then consider an \(A \ni e \) with \(|I \cap A| = r(A) \).
- Then \(I \cap A \) serves as a base for \(A \) (i.e., \(I \cap A \) spans \(A \)) and any such \(A \) contains a circuit (i.e., we can add \(e \notin I \) to \(I \cap A \) w/o increasing rank).
- Given \(e \in \text{sat}(1_I) \setminus I \), and consider \(\text{dep}(1_I, e) \), with:
 \[
 \text{dep}(1_I, e) = \bigcap \{ A : e \in A \subseteq E, 1_I(A) = r(A) \} \quad (10.45)
 \]
 \[
 = \bigcap \{ A : e \in A \subseteq E, |I \cap A| = r(A) \} \quad (10.46)
 \]
- Then there is a unique minimal \(A \ni e \) with \(|I \cap A| = r(A) \).
- Thus, \(\text{dep}(1_I, e) \) must be a circuit since if it included more than a circuit, it would not be minimal in this sense.
Therefore, when \(e \in \text{sat}(1_I) \setminus I \), then \(\text{dep}(1_I, e) = C(I, e) \) where \(C(I, e) \) is the unique circuit contained in \(I + e \) in a matroid (the fundamental circuit of \(e \) and \(I \) that we encountered before).

Now, if \(e \in \text{sat}(1_I) \cap I \) with \(I \in I \), we said that \(C(I, e) \) was undefined (since no circuit is created in this case) and so we defined it as \(C(I, e) = \{e\} \).

In this case, for such an \(e \), we have \(\text{dep}(1_I, e) = \{e\} \) since all such sets \(A \ni e \) with \(|I \cap A| = r(A) \) contain \(e \), but in this case no cycle is created.

We are thus free to take subsets of \(I \) as \(A \), all of which must contain \(e \), but all of which have rank equal to size.

Also note: in general for \(x \in P_f \) and \(e \in \text{sat}(x) \), we have \(\text{dep}(x, e) \) is tight by definition.

Summary of \(\text{sat} \), and \(\text{dep} \)

- For \(x \in P_f \), \(\text{sat}(x) \) (span, closure) is the maximal saturated (\(x \)-tight) set w.r.t. \(x \). I.e., \(\text{sat}(x) = \{e : e \in E, \forall \alpha > 0, x + \alpha e \notin P_f\} \). That is,

\[
\text{cl}(x) \overset{\text{def}}{=} \text{sat}(x) \triangleq \bigcup \{A : A \in \mathcal{D}(x)\} = \bigcup \{A : A \subseteq E, x(A) = f(A)\} = \{e : e \in E, \forall \alpha > 0, x + \alpha e \notin P_f\}
\]

- For \(e \in \text{sat}(x) \), \(\text{dep}(x, e) \) (fundamental circuit) is the minimal (common) saturated (\(x \)-tight) set w.r.t. \(x \) containing \(e \). That is,

\[
\text{dep}(x, e) = \begin{cases}
\bigcap \{A : e \in A \subseteq E, x(A) = f(A)\} & \text{if } e \in \text{sat}(x) \\
\emptyset & \text{else}
\end{cases} = \{e' : \exists \alpha > 0, \text{ s.t. } x + \alpha (1_e - 1_{e'}) \in P_f\}
\]
Dependence Function and exchange

- For $e \in \text{span}(I) \setminus I$, we have that $I + e \notin I$. This is a set addition restriction property.
- Analogously, for $e \in \text{sat}(x)$, any $x + \alpha 1_e \notin P_f$ for $\alpha > 0$. This is a vector increase restriction property.
- Recall, we have $C(I, e) \setminus e' \in I$ for $e' \in C(I, e)$. i.e., $C(I, e)$ consists of elements that when removed recover independence.
- In other words, for $e \in \text{span}(I) \setminus I$, we have that
 \[C(I, e) = \{ a \in E : I + e - a \in I \} \quad (10.51) \]
 i.e., an addition of e to I stays within I only if we simultaneously remove one of the elements of $C(I, e)$.
- But, analogous to the circuit case, is there an exchange property for $\text{dep}(x, e)$ in the form of vector movement restriction?
- We might expect the vector $\text{dep}(x, e)$ property to take the form: a positive move in the e-direction stays within P_f^+ only if we simultaneously take a negative move in one of the $\text{dep}(x, e)$ directions.

Dependence Function and exchange in 2D

- Viewable in 2D, we have for $A, B \subseteq E$, $A \cap B = \emptyset$:
 \[(e) \]

 Left: $A \cap \text{dep}(x, e) = \emptyset$, and we can't move further in (e) direction, and moving in any negative $a \in A$ direction doesn't change that. Notice no dependence between (e) and any element in A.

 Right: $A \subseteq \text{dep}(x, e)$, and we can't move further in the (e) direction, but we can move further in (e) direction by moving in some $a \in A$ negative direction. Notice dependence between (e) and elements in A.

We can move neither in the (e) nor the (a) direction, but we can move in the (e) direction if we simultaneously move in the -(a) direction.

In 3D, we have:

\[\text{(e)-(a)} \]

I.e., for \(e \in \text{sat}(x) \), \(a \in \text{sat}(x) \), \(a \in \text{dep}(x, e) \), \(e \notin \text{dep}(x, a) \), and
\[
\text{dep}(x, e) = \{ a : a \in E, \exists \alpha > 0 : x + \alpha(1_e - 1_a) \in P_f \} \quad (10.52)
\]

We next show this formally ...

The derivation for \(\text{dep}(x, e) \) involves turning a strict inequality into a non-strict one with a strict explicit slack variable \(\alpha \):

\[
\text{dep}(x, e) = \{ e' : x(A) < f(A), \forall A \nsubseteq e', e \in A \} \quad (10.53)
\]

\[
= \{ e' : \exists \alpha > 0, \ \text{s.t.} \ \alpha \leq f(A) - x(A), \forall A \nsubseteq e', e \in A \} \quad (10.54)
\]

\[
= \{ e' : \exists \alpha > 0, \ \text{s.t.} \ \alpha 1_e(A) \leq f(A) - x(A), \forall A \nsubseteq e', e \in A \} \quad (10.55)
\]

\[
= \{ e' : \exists \alpha > 0, \ \text{s.t.} \ \alpha(1_e(A) - 1_{e'}(A)) \leq f(A) - x(A), \forall A \nsubseteq e', e \in A \} \quad (10.56)
\]

\[
= \{ e' : \exists \alpha > 0, \ \text{s.t.} \ x(A) + \alpha(1_e(A) - 1_{e'}(A)) \leq f(A), \forall A \nsubseteq e', e \in A \} \quad (10.57)
\]

Now, \(1_e(A) - 1_{e'}(A) = 0 \) if either \(\{ e, e' \} \subseteq A \), or \(\{ e, e' \} \cap A = \emptyset \).

Also, if \(e' \in A \) but \(e \notin A \), then
\[
x(A) + \alpha(1_e(A) - 1_{e'}(A)) = x(A) - \alpha \leq f(A) \quad \text{since} \ x \in P_f.
\]
dep and exchange derived

- thus, we get the same in the above if we remove the constraint \(A \not\ni e', e \in A \), that is we get

\[
\text{dep}(x,e) = \{e' : \exists \alpha > 0, \text{ s.t. } x(A) + \alpha(1_e(A) - 1_{e'}(A)) \leq f(A), \forall A\}
\]

(10.59)

- This is then identical to

\[
\text{dep}(x,e) = \{e' : \exists \alpha > 0, \text{ s.t. } x + \alpha(1_e - 1_{e'}) \in P_f\}
\]

(10.60)

- Compare with original, the minimal element of \(D(x,e) \), with \(e \in \text{sat}(x) \):

\[
\text{dep}(x,e) = \begin{cases} \bigcap \{A : e \in A \subseteq E, x(A) = f(A)\} & \text{if } e \in \text{sat}(x) \\
\emptyset & \text{else} \end{cases}
\]

(10.61)

Sources for Today’s Lecture

End

Scratch Paper