Logistics

Announcements, Assignments, and Reminders

- Please do use our discussion board (https://catalyst.uw.edu/gopost/board/bilmes/29948/) for all questions, comments, so that all will benefit from them being answered.
- I’ll likely be gone the week of Dec 3rd-7th. Hence, we’ll most likely have two extra lectures the following week (during finals week). More details TBA.
Cumulative Outstanding Reading

- Read Tom McCormick's overview paper on SFM http://people.commerce.ubc.ca/faculty/mccormick/sfmchap8a.pdf
- Read chapters 1 - 3 from Fujishige book.
- Read over lecture slides, all posted on our web page (http://j.ee.washington.edu/~bilmes/classes/ee596a_fall_2012/).
- See the summary slide at the end for lectures for additional reading sources.
The “integral” in the Choquet integral

- Thought of as an integral over \mathbb{R} of a piece-wise constant function.
- First note, assuming E is ordered according to descending w, so that $w(e_1) \geq w(e_2) \geq \cdots \geq w(e_{m-1}) \geq w(e_m)$, then $E_i = \{e_1, e_2, \ldots, e_i\} = \{e \in E : w_e \geq w_{e_i}\}$.
- For any $w_{e_i} > \alpha \geq w_{e_{i+1}}$ we also have $E_i = \{e_1, e_2, \ldots, e_i\} = \{e \in E : w_e > \alpha\}$.
- Consider segmenting the real-axis at boundary points w_{e_i}, right most is w_{e_1}.

\[
\begin{array}{ccccccc}
& & & & & w(e_m) & w(e_{m-1}) & \cdots & w(e_5) & w(e_4) & w(e_3) & w(e_2) & w(e_1)
\end{array}
\]

- A function can be defined on a segment of \mathbb{R}, namely $w_{e_i} > \alpha \geq w_{e_{i+1}}$. This function $F_i : [w_{e_{i+1}}, w_{e_i}) \rightarrow \mathbb{R}$ is defined as

\[
F_i(\alpha) = f(\{e \in E : w_e > \alpha\}) = f(E_i) \quad (14.11)
\]

We can generalize this to multiple segments of \mathbb{R} (for now, take $w \in \mathbb{R}^E_+$. The piecewise-constant function is defined as:

\[
F(\alpha) = \begin{cases}
 f(E) & \text{if } 0 \leq \alpha \leq w_m \\
 f(\{e \in E : w_e > \alpha\}) & \text{if } w_{e_{i+1}} \leq \alpha < w_{e_i}, \ i \in \{1, \ldots, m-1\} \\
 0 & \text{if } w_1 < \alpha
\end{cases}
\]

- Visualizing a piecewise constant function, where the constant values are given by f evaluated on E_i for each i

\[
\begin{array}{ccccccc}
f(E) & f(\{e \in E : w_e > \alpha\}) & f(E \setminus \{e_m, e_{m-1}\}) & f(\{e \in E : w_e > \alpha\}) & f(\{e \in E : w_e > \alpha\}) & f(E \setminus \{e_{m-1}\}) & f(E \setminus \{e_{m-2}\}) & f(E \setminus \{e_{m-3}\}) & f(E \setminus \{e_{m-4}\}) & f(E \setminus \{e_{m-5}\})
\end{array}
\]

Note, what is depicted may be a game but not a capacity.
The “integral” in the Choquet integral

- Now consider the integral, with \(w \in \mathbb{R}_+^E \), and normalized \(f \) so that \(f(\emptyset) = 0 \). Recall \(w_{m+1} \overset{\text{def}}{=} 0 \).

\[
\tilde{f}(w) \overset{\text{def}}{=} \int_0^\infty F(\alpha) d\alpha \quad (14.12)
\]

\[
= \int_0^\infty f(\{ e \in E : w_e > \alpha \}) d\alpha \quad (14.13)
\]

\[
= \int_{w_{m+1}}^\infty f(\{ e \in E : w_e > \alpha \}) d\alpha \quad (14.14)
\]

\[
= \sum_{i=1}^m \int_{w_{i+1}}^{w_i} f(\{ e \in E : w_e > \alpha \}) d\alpha \quad (14.15)
\]

\[
= \sum_{i=1}^m \int_{w_{i+1}}^{w_i} f(E_i) d\alpha = \sum_{i=1}^m f(E_i)(w_i - w_{i+1}) \quad (14.16)
\]

- But we saw before that \(\sum_{i=1}^m f(E_i)(w_i - w_{i+1}) \) is just the Lovász extension of a function \(f \).

- Thus, we have the following definition:

Definition 14.2.2

Given \(w \in \mathbb{R}_+^E \), the Lovász extension (equivalently Choquet integral) may be defined as follows:

\[
\tilde{f}(w) \overset{\text{def}}{=} \int_0^\infty F(\alpha) d\alpha \quad (14.17)
\]

where the function \(F \) is defined as before.

- Note that it is not necessary in general to require \(w \in \mathbb{R}_+^E \) (i.e., we can take \(w \in \mathbb{R}^E \)) nor that \(f \) be non-negative, but it is a bit more involved. Above is the simple case.
Lovász extension, as integral

- Additional ways we can define the Lovász extension for any (not necessarily submodular) but normalized function f include:

\begin{align*}
\tilde{f}(w) &= \sum_{i=1}^{m} w(e_i)f(e_{i} | E_{i-1}) \\
&= \sum_{i=1}^{m-1} f(E_i)(w(e_i) - w(e_{i+1})) + f(E)w(e_m) \\
&= \int_{\min\{w_1, \ldots, w_m\}}^{+\infty} f(\{w \geq \alpha\})d\alpha + f(E)\min\{w_1, \ldots, w_m\} \\
&= \int_{0}^{+\infty} f(\{w \geq \alpha\})d\alpha + \int_{-\infty}^{0} [f(\{w \geq \alpha\}) - f(E)]d\alpha
\end{align*}

Lovász extension properties

- Using the above, have the following (some of which we’ve seen):

Theorem 14.2.3

Let $f, g : 2^E \to \mathbb{R}$ be normalized ($f(\emptyset) = g(\emptyset) = 0$). Then

1. **Superposition of LE operator:** Given f and g with Lovász extensions \tilde{f} and \tilde{g} then $\tilde{f} + \tilde{g}$ is the Lovász extension of $f + g$ and $\lambda \tilde{f}$ is the Lovász extension of λf for $\lambda \in \mathbb{R}$.

2. If $w \in \mathbb{R}^E_+$ then $\tilde{f}(w) = \int_{0}^{+\infty} f(\{w \geq \alpha\})d\alpha$.

3. For $w \in \mathbb{R}^E$, and $\alpha \in \mathbb{R}$, we have $\tilde{f}(w + \alpha 1_E) = \tilde{f}(w) + \alpha f(E)$.

4. **Positive homogeneity:** i.e., $\tilde{f}(\alpha w) = \alpha \tilde{f}(w)$ for $\alpha \geq 0$.

5. For all $A \subseteq E$, $\tilde{f}(1_A) = f(A)$.

6. f symmetric as in $f(A) = f(E \setminus A), \forall A$, then $\tilde{f}(w) = \tilde{f}(-w)$ (\tilde{f} is even).

7. **Given partition $E^1 \cup E^2 \cup \cdots \cup E^k$ of E and $w = \sum_{i=1}^{k} \gamma_i 1_{E^i}$ with $\gamma_1 \geq \gamma_2 \geq \cdots \geq \gamma_k$, and with $E^{1:i} = E^1 \cup E^2 \cup \cdots \cup E^i$, then $\tilde{f}(w) = \sum_{i=1}^{k} \gamma_i f(E^1|E^{1:i-1}) = \sum_{i=1}^{k-1} f(E^{1:i})(\gamma_i - \gamma_{i+1}) + f(E)\gamma_k$.**
In fact, we have:

Theorem 14.3.3

Let f be submodular and \tilde{f} be its Lovász extension. Then
\[\min \{ f(A) | A \subseteq E \} = \min_{w \in \{0,1\}^E} \tilde{f}(w) = \min_{w \in [0,1]^E} \tilde{f}(w). \]

Proof.

- First, since $\tilde{f}(1_A) = f(A)$, $\forall A \subseteq V$, we clearly have
 \[\min \{ f(A) | A \subseteq V \} = \min_{w \in \{0,1\}^E} \tilde{f}(w) \geq \min_{w \in [0,1]^E} \tilde{f}(w). \]

- Next, consider any $w \in [0,1]^E$, sort elements $E = \{e_1, \ldots, e_m\}$ as $w(e_1) \geq w(e_2) \geq \cdots \geq w(e_m)$, define $E_i = \{e_1, \ldots, e_i\}$, and define $\lambda_m = w(e_m)$ and $\lambda_i = w(e_i) - w(e_{i+1})$ for $i \in \{1, \ldots, m-1\}$.

- Then, as we have seen, $w = \sum_i \lambda_i 1_{E_i}$ and $\lambda_i \geq 0$.

- Also, $\sum_i \lambda_i = w(e_1) \leq 1$.

...
Minimizing \tilde{f} vs. minimizing f

...cont. proof of Thm. 14.3.3.

- Note that since $f(\emptyset) = 0$, $\min \{ f(A) | A \subseteq E \} \leq 0$.
- Then we have
 \[
 \tilde{f}(w) = \int_0^1 f(\{w \geq \alpha\}) d\alpha = \sum_{i=1}^{m} \lambda_i f(E_i)
 \]
 \[
 \geq \sum_{i=1}^{m} \lambda_i \min_{A \subseteq E} f(A)
 \]
 \[
 \geq \min_{A \subseteq E} f(A)
 \]
- Thus, $\min \{ f(A) | A \subseteq E \} = \min_{w \in [0,1]^E} \tilde{f}(w)$.

Other minimizers based on min of f

- Let $w^* \in \arg\min \left\{ \tilde{f}(w) | w \in [0,1]^E \right\}$ and let $A^* \in \arg\min \{ f(A) | A \subseteq V \}$.
- Previous theorem states that $\tilde{f}(w^*) = f(A^*)$.
- Let λ_i^* be the function weights and E_i^* be the sets associated with w^*. From previous theorem, we have
 \[
 \tilde{f}(w^*) = \sum_i \lambda_i^* f(E_i^*) = f(A^*) = \min \{ f(A) | A \subseteq E \}
 \]
 and that $f(A^*) \leq f(E_i^*), \forall i$, and that $f(A^*) \leq 0$.
- Thus, since $w^* \in [0,1]^E$, each $0 \leq \lambda_i^* \leq 1$, we have for all i such that $\lambda_i^* > 0$,
 \[
 f(E_i^*) = f(A^*)
 \]
 meaning such E_i^* are also minimizers of f, and $\sum_i \lambda_i = 1$.
- Hence w^* is in convex hull of incidence vectors of minimizers of f.

Simple expressions for Lovász E with $m = 2$, $E = \{1, 2\}$

- If $w_1 \geq w_2$, then
 \[
 \tilde{f}(w) = w_1 f(\{1\}) + w_2 f(\{2\}|\{1\}) \\
 = (w_1 - w_2) f(\{1\}) + w_2 f(\{1, 2\})
 \]
 (14.1)

- If $w_1 \leq w_2$, then
 \[
 \tilde{f}(w) = w_2 f(\{2\}) + w_1 f(\{1\}|\{2\}) \\
 = (w_2 - w_1) f(\{2\}) + w_1 f(\{1, 2\})
 \]
 (14.2)

- If $w_1 \geq w_2$, then
 \[
 \tilde{f}(w) = w_1 f(\{1\}) + w_2 f(\{2\}|\{1\}) \\
 = (w_1 - w_2) f(\{1\}) + w_2 f(\{1, 2\})
 \]
 (14.3)

- If $w_1 \leq w_2$, then
 \[
 \tilde{f}(w) = w_2 f(\{2\}) + w_1 f(\{1\}|\{2\}) \\
 = (w_2 - w_1) f(\{2\}) + w_1 f(\{1, 2\})
 \]
 (14.4)

- A similar (symmetric) expression holds when $w_1 \leq w_2$.

A similar (symmetric) expression holds when $w_1 \leq w_2$.

\[
\tilde{f}(w) = w_2 f(\{2\}) + w_1 f(\{1\}|\{2\}) \\
= (w_2 - w_1) f(\{2\}) + w_1 f(\{1, 2\})
\]
(14.5)

\[
\frac{1}{2} f(1)(w_1 - w_2) + \frac{1}{2} f(1)(w_1 - w_2)
\]
(14.6)

\[
\frac{1}{2} f(\{1, 2\})(w_1 + w_2) - \frac{1}{2} f(\{1, 2\})(w_1 - w_2)
\]
(14.7)

\[
\frac{1}{2} f(2)(w_1 - w_2) + \frac{1}{2} f(2)(w_2 - w_1)
\]
(14.8)
This gives, for general \(w_1, w_2 \), that

\[
\tilde{f}(w) = \frac{1}{2} (f(\{1\}) + f(\{2\}) - f(\{1, 2\})) |w_1 - w_2| \quad (14.10)
\]

\[
+ \frac{1}{2} (f(\{1\}) - f(\{2\}) + f(\{1, 2\})) w_1 \quad (14.11)
\]

\[
+ \frac{1}{2} (-f(\{1\}) + f(\{2\}) + f(\{1, 2\})) w_2 \quad (14.12)
\]

\[
= -(f(\{1\}) + f(\{2\}) - f(\{1, 2\})) \min \{w_1, w_2\} \quad (14.13)
\]

\[
+ f(\{1\}) w_1 + f(\{2\}) w_2 \quad (14.14)
\]

Thus, if \(f(A) = H(X_A) \) is the entropy function, we have

\[
\tilde{f}(w) = H(e_1) w_1 + H(e_2) w_2 - I(e_1; e_2) \min \{w_1, w_2\} \text{ which must be convex in } w, \text{ where } I(e_1; e_2) \text{ is the mutual information.}
\]

This “simple” but general form of the Lovász extension with \(m = 2 \) can be useful.

Example: \(m = 2, E = \{1, 2\} \), contours

If \(w_1 \geq w_2 \), then

\[
\tilde{f}(w) = w_1 f(\{1\}) + w_2 f(\{2\}|\{1\}) \quad (14.15)
\]

- If \(w = (1, 0)/f(\{1\}) = (1/f(\{1\}), 0) \) then \(\tilde{f}(w) = 1 \).
- If \(w = (1, 1)/f(\{1, 2\}) \) then \(\tilde{f}(w) = 1 \).

If \(w_1 \leq w_2 \), then

\[
\tilde{f}(w) = w_2 f(\{2\}) + w_1 f(\{1\}|\{2\}) \quad (14.16)
\]

- If \(w = (0, 1)/f(\{2\}) = (0, 1/f(\{2\})) \) then \(\tilde{f}(w) = 1 \).
- If \(w = (1, 1)/f(\{1, 2\}) \) then \(\tilde{f}(w) = 1 \).

With this we can plot contours of the form \(\{w \in \mathbb{R}^2 : \tilde{f}(w) = 1\} \) with marked points of the form \(1_A \times 1/f(A) \).
Example: $m = 2, E = \{1, 2\}$

- Contour plot of $m = 2$ Lovász extension (from Bach-2011).

```
(0, 1)/f(\{2\})
w_2 > w_1
(1, 1)/f(\{1, 2\})

\{w : f(\tilde{w}) = 1\}
```

- $w_2 > w_1$
- $(0, 1)/f(\{2\})$
- $(1, 1)/f(\{1, 2\})$

- $w_1 > w_2$

- Q: does f appear to be a polymatroid function?

**Example: **$m = 3, E = \{1, 2, 3\}$

- In order to visualize in 3D, we make a few simplifications.
- Consider any submodular f' and $x \in B_{f'}$. Then
 \[
 f(A) = f'(A) - x(A) \text{ is submodular, and moreover } f(E) = f'(E) - x(E) = 0.
 \]
- Hence, from $\tilde{f}(w + \alpha 1_E) = \tilde{f}(w) + \alpha f(E)$, we have that
 \[
 \tilde{f}(w + \alpha 1_E) = \tilde{f}(w).
 \]
- Thus, we can look “down” on the contour plot of the Lovász extension, \{w : \tilde{f}(w) = 1\}, from a vantage point right on the line \{x : x = \alpha 1_E, \alpha > 0\} since moving in direction 1_E changes nothing.
Example: \(m = 3, \ E = \{1, 2, 3\} \)

- Example 1 (from Bach-2011): \(f(A) = 1_{|A| \in \{1, 2\}} = \min \{|A|, 1\} + \min \{|E \setminus A|, 1\} - 1 \) is submodular, and \(\tilde{f}(w) = \max_{k \in \{1, 2, 3\}} w_k - \min_{k \in \{1, 2, 3\}} w_k \).

- Example 2 (from Bach-2011):
 \[
 f(A) = |1_{1 \in A} - 1_{2 \in A}| + |1_{2 \in A} - 1_{3 \in A}|
 \]
 This gives a “total variation” function for the Lovász extension, with \(\tilde{f}(w) = |w_1 - w_2| + |w_2 - w_3| \), a prior to prefer piecewise-constant signals.
Total Variation Example

From “Nonlinear total variation based noise removal algorithms” Rudin, Osher, and Fatemi, 1992. Top left original, bottom right total variation.

Example: Lovász extension of concave over modular

- Let \(m : E \to \mathbb{R}_+ \) be a modular function and define
 \[f(A) = g(m(A)) \]
 where \(g \) is concave. Then \(f \) is submodular.
- Let \(M_j = \sum_{i=1}^j m(e_i) \)
- \(\tilde{f}(w) \) is given as
 \[\tilde{f}(w) = \sum_{i=1}^m w(e_i)(g(M_i) - g(M_{i-1})) \] \hspace{1cm} (14.17)
- And if \(m(A) = |A| \), we get
 \[\tilde{f}(w) = \sum_{i=1}^m w(e_i)(g(i) - g(i-1)) \] \hspace{1cm} (14.18)
Example: Lovász extension and cut functions

- Cut Function: Given a non-negative weighted graph $G = (V, E, m)$ where $m : E \to \mathbb{R}_+$ is a modular function over the edges, we know from Lecture 2 that $f : 2^V \to \mathbb{R}_+$ with $f(X) = m(\Gamma(X))$ where $\Gamma(X) = \{(u, v) | (u, v) \in E, u \in X, v \in V \setminus X\}$ is non-monotone submodular.

- Simple way to write it, with $m_{ij} = m((i, j))$:

$$f(X) = \sum_{i \in X, j \in V \setminus X} m_{ij} \tag{14.19}$$

- Exercise: show that Lovász extension of graph cut may be written as:

$$\tilde{f}(w) = \sum_{i, j \in V} m_{ij} \max \{ (w_i - w_j), 0 \} \tag{14.20}$$

where elements are ordered as usual, $w_1 \geq w_2 \geq \cdots \geq w_n$.

- This is also a form of “total variation”

A few more Lovász extension examples

Some additional submodular functions and their Lovász extensions, where $w(e_1) \geq w(e_2) \geq \cdots \geq w(e_m) \geq 0$. Let $W_k \triangleq \sum_{i=1}^k w(e_i)$.

<table>
<thead>
<tr>
<th>$f(A)$</th>
<th>$\tilde{f}(w)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$</td>
<td>A</td>
</tr>
<tr>
<td>$\min(</td>
<td>A</td>
</tr>
</tbody>
</table>

(thanks to K. Narayanan).
Lovász extension and norms

- In general, Lovász extension can be useful to define various norms of the form \(\|w\|_{\tilde{f}} = \tilde{f}(|w|) \), which renders the function symmetric about all orthants (i.e., \(\|w\|_{\tilde{f}} = \|b \circ w\|_{\tilde{f}} \) where \(b \in \{-1, 1\}^m \) and \(\circ \) is element-wise multiplication).

- Simple example. The Lovász extension of the modular function \(f(A) = |A| \) is the \(\ell_1 \) norm, and the Lovász extension of the modular function \(f(A) = m(A) \) is the weighted \(\ell_1 \) norm.

- With more general submodular functions, one can generate a large and interesting variety of norms, all of which have polyhedral contours (unlike, say, something like the \(\ell_2 \) norm).

- Hence, not all norms come from the Lovász extension of some submodular function.

- Similarly, not all convex functions are the Lovász extension of some submodular function.

- Bach-2011 has a complete discussion of this.

Summary important definitions so far: tight, dep, & sat

- \(x \)-tight sets: For \(x \in P_f \), \(D(x) = \{A \subseteq E : x(A) = f(A)\} \).

- Polymatroid closure/maximal \(x \)-tight set: For \(x \in P_f \),
 \[\text{sat}(x) = \bigcup\{A : A \in D(x)\} = \{e : e \in E, \forall \alpha > 0, x + \alpha e \notin P_f\} \]

- Saturation capacity: for \(x \in P_f \), \(0 \leq \hat{c}(x; e) = \min \{f(A) - x(A) | \forall A \ni e\} = \max \{\alpha : \alpha \in \mathbb{R}, x + \alpha e \in P_f\} \)

- Recall: \(\text{sat}(x) = \{e : \hat{c}(x; e) = 0\} \) and \(E \setminus \text{sat}(x) = \{e : \hat{c}(x; e) > 0\} \).

- \(e \)-containing \(x \)-tight sets: For \(x \in P_f \),
 \[D(x, e) = \{A : e \in A \subseteq E, x(A) = f(A)\} \subseteq D(x) \]

- Minimal \(e \)-containing \(x \)-tight set/polymatroidal fundamental circuit/: For \(x \in P_f \),
 \[\text{dep}(x, e) = \begin{cases} \bigcap \{A : e \in A \subseteq E, x(A) = f(A)\} & \text{if } e \in \text{sat}(x) \\ \emptyset & \text{else} \end{cases} = \{e' : \exists \alpha > 0, \text{ s.t. } x + \alpha (1_e - 1_{e'}) \in P_f\} \]
dep and sat in a lattice

- The picture on the right summarizes the relationships between the lattices and sublattices.
- Note, \(\bigcap_e \text{dep}(x, e) = \text{dep}(x) \).

Summary of \(\text{sat}, \text{dep} \)

- For \(x \in P_f \), \(\text{sat}(x) \) (span, closure) is the maximal saturated \((x\text{-tight})\) set w.r.t. \(x \). I.e., \(\text{sat}(x) = \{ e : e \in E, \forall \alpha > 0, x + \alpha 1_e \notin P_f \} \). That is,
 \[
 \text{cl}(x) \overset{\text{def}}{=} \text{sat}(x) \triangleq \bigcup \{ A : A \in \mathcal{D}(x) \} = \bigcup \{ A : A \subseteq E, x(A) = f(A) \} = \{ e : e \in E, \forall \alpha > 0, x + \alpha 1_e \notin P_f \}
 \]

- For \(e \in \text{sat}(x) \), \(\text{dep}(x, e) \) (fundamental circuit) is the minimal \((\text{common})\) saturated \((x\text{-tight})\) set w.r.t. \(x \) containing \(e \). That is,
 \[
 \text{dep}(x, e) = \begin{cases}
 \bigcap \{ A : e \in A \subseteq E, x(A) = f(A) \} & \text{if } e \in \text{sat}(x) \\
 \emptyset & \text{else} \\
 \{ e' : \exists \alpha > 0, \text{ s.t. } x + \alpha (1_e - 1_{e'}) \in P_f \} & \end{cases}
 \]
Consider \(x \in P_f \), and consider the following set
\[
\text{DEP}(x) = \{ \text{dep}(x, e) : e \in \text{sat}(x) \} \tag{14.21}
\]
So \(\text{DEP}(x) \) is a set of sets, each element of \(\text{DEP}(x) \) is the \(\text{dep}(x, e) \) valuation for some \(e \in \text{sat}(x) \).

Moreover, define a partial order on \(\text{DEP}(x) \) as follows: if \(A, B \in \text{DEP}(x) \), then \(A \preceq B \) iff \(A \subseteq B \).

We’re going to use this partial order to define a partial order on all elements of \(\text{sat}(x) \).

Now recall \(D(x) = \{ A : x(A) = f(A) \} \) forms a distributive lattice. What is the natural partial order?

Now in any distributive lattice \(L \), consider its join-irreducibles \(\mathcal{J} \) (i.e., any element \(A \in \mathcal{J} \) can’t be represented as a join of any other two elements in \(L \)).

Fact (see Birkhoff, 1969) if the lattice has length \(n \), then \(\mathcal{J} \) will have exactly \(n \) elements (in the Boolean case, these are atoms/ground elements), and each element in \(\mathcal{J} \) is partially ordered by the lattice partial order.

Moreover, any element can be “generated” by joining the join-irreducible elements.
dep and partial order

- Now any element in \(\text{DEP}(x) \) (for \(x \) extreme) can’t be represented by the join of two other elements in \(\text{DEP}(x) \).
- Specifically, let \(e, a, b \in E \) be such that \(\text{dep}(x, e), \text{dep}(x, a), \text{dep}(x, b) \in \text{DEP}(x) \). Then we can’t have \(\text{dep}(x, e) = \text{dep}(x, a) \cup \text{dep}(x, b) \), unless either \(\text{dep}(x, e) = \text{dep}(x, b) \) or \(\text{dep}(x, e) = \text{dep}(x, a) \), meaning they are join irreducibles.
- The reason is since the minimal tight sets containing \(e \) would not be generated by merging two minimal tight sets containing, say, \(a \), and \(b \), where all of \(a, b, e \) are unequal.
- Thus, considering \(D(x) \) as a distributed lattice, then \(\text{DEP}(x) \) are the join-irreducibles.
- And the order \(\preceq \) defined earlier is the natural order w.r.t. this lattice and its join-irreducibles.

Let \(x \in P_f \) again be an extreme point, and let it be generated by an ordering of \(B = (e_1, e_2, \ldots, e_k) \subseteq E \) with \(B_i = (b_i, b_2, \ldots, b_i) \), \(i \leq k \) a prefix order w.r.t. ordered items \(B \) (\(B \) and \(B_i, \forall i \) are ordered sets).
- Recall, the equation for \(x \) is of the form \(x(e) = 0 \) for some \(e \) and \(x(A) = f(A) \) for some \(A \) (see earlier). Specifically, we have that \(x(E \setminus B) = 0 \) and, for \(i = 1 \ldots k \), \(x(B_i) = f(B_i) \).
- Thus, each of \(B_i \) is a tight set.
- We also have that \(\text{supp}(x) \subseteq B \).
dep and partial order

- Thus, for any \(d, e \in \text{supp}(x) \subseteq B \), there is a tight set containing one but not the other. Specifically, let \(d = e_i \) and \(e = e_j \) with \(i < j \). Then non-zero \(B_i \) (i.e., \(B_i \cap \text{supp}(x) \)) contains \(d \) but not \(e \).
- So there is a tight set (namely \(B_i \)) that contains \(d = e_i \) but not \(e = e_j \) with \(j > i \) (note, vice versa is not true).
- Thus, for any \(d, e \in \text{supp}(x) \subseteq B \), we have \(\text{dep}(x, d) \neq \text{dep}(x, e) \).
- That is, \(B_i \) is a tight set with \(d \) but not with \(e \). Since \(\text{dep}(x, d) \subseteq B_i \), we thus have \(e \notin \text{dep}(x, d) \), but of course \(e \in \text{dep}(x, e) \), so \(\text{dep}(x, d) \neq \text{dep}(x, e) \).
- Moreover, for any \(d \in B \), it might be that \(\text{dep}(x, d) = B_i \) where \(d = e_i \). This point is further clarified in the next slide.

dep and partial order (slight digression)

- I.e., \(x \) is extreme generated by \(B \Rightarrow B_i \) is a tight set containing \(e_i \).
- For any \(j < i \), \(B_j \) does not contain \(e_i \).
- Thus, \(\text{dep}(x, e_i) \) (minimal tight \(e_i \)-containing set) might equal \(B_i \).
- On the other hand, consider the extreme vector \(x^{(i)} \in \mathbb{R}^E \) with
 \[
x^{(i)}(e) = \begin{cases} x(e) & \text{if } e \in B_i \\ 0 & \text{else} \end{cases}
\]
 so \(x^{(i)} \) is just the extreme vector generated by the ordered set \(B_i \).
- Therefore, \(B_j \) for \(j \leq i \) are tight w.r.t. \(x^{(i)} \).
- Could be another ordered set (say \(B^{(i)} \), which is \(B_i \) permuted) that also generates \(x^{(i)} \). Let \(B_j^{(i)} \), \(j \leq i \) be the first \(j \) elements in \(B^{(i)} \).
- In \(B^{(i)} \), \(e_i \) might come at a position \(j < i \), so \(B_j^{(i)} \) is tight and containing \(e_i \), and \(\text{dep}(x, e_i) \) might equal \(B_j^{(i)} \), with \(B_j^{(i)} \subset B_i \).
Hence, B_i is an x-tight set with e_i at position $|B_i| = i$, and $B_j^{(i)}$ is a permutation of B_i with e_i at position $j < i$, and is also an x-tight set.

On the other hand, $B_j^{(i)} \not\subseteq \text{dep}(x, e_i)$ and $B_i \not\subseteq \text{dep}(x, e_i)$ due to $\text{dep}(x, e_i)$’s minimality.

Therefore, in general, $\text{dep}(x, e_i) \subseteq B_i$ and $\text{dep}(x, e_i) \subseteq B_j^{(i)}$.

And this is true regardless of the permutation of B_i, as long as it generates $x^{(i)}$.

Now, while $\text{dep}(x, e_i) \subseteq B_i$, we can be a bit more explicit.

Let $B(x)$ be set of permutations of B that generate x.

For $e \in B$ and $B' \in B(x)$, let $1 \leq e(B') \leq |B'|$ be e’s position in B'.

Then $\text{dep}(x, e_i) = B_j^{e_i}$ where

$$B_j^{e_i} \in \arg\min_{B' \in B(x)} e_i(B')$$

(14.23)

is an ordered set, and j is the position of e_i in $B_j^{e_i}$, i.e., $j = e_i(B_j^{e_i})$.

This follows from iff relationship between extremal points and greedy algorithm, and since $\text{dep}(x, e_i)$ is the unique “0” element of a distributive lattice.

Then since $\text{dep}(x, e_i) = B_j^{e_i}$, and it is the unique minimal e_i-containing x-tight set, we also have

$$|\arg\min_{B' \in B(x)} e_i(B')| = 1,$$

meaning

$$\{B_j^{e_i}\} = \arg\min_{B' \in B(x)} e_i(B')$$

(14.24)
B is an ordered set of size $k \leq m = |E|$, and B_j is an ordered set consisting of j-element prefix of B, so $|B_j| = j$.

For ordered set B, and $e \in B$, we have $e(B)$ is the index of e within B. I.e., if $B = (e_1, e_2, \ldots, e_k)$ then $e_i(B) = i$ for $1 \leq i \leq k$.

B generates $x \in \mathbb{R}^E$, meaning $x(e_i) = f(e_i|B_{i-1})$ for $e_i \in B$.

$B(x)$ is the set of permutations of B that generate x, meaning for any $B' \in B(x)$, we have $x(e_i) = f(e_i|B'_{i-1})$ for $e_i \in B$.

B^e is the permutation within $B(x)$ where e occurs earliest. I.e., $e(B^e) \leq e(B')$ for any $B' \in B(x)$.

B^e_j is the j-element prefix of B^e.

B^e is just B^e_i for $e = e_i$. Same with B^e_j and B^e_i.

Previous slide, we argued that for $e \in \text{sat}(x)$, $\text{dep}(x, e) = B^e_j$ with $j = e(B^e)$ (could also write this as $\text{dep}(x, e) = B^e_{e(B^e)}$).

Dep and partial order (slight digression)

Now, for $d, e \in \text{sat}(x)$, we have that

$$\text{dep}(x, d) = B^d_i \subset \text{dep}(x, e) = B^e_j \iff d \in \text{dep}(x, e) \quad (14.25)$$

where $i = d(B^d)$ and $j = e(B^e)$.

Proof:

Clearly, $\text{dep}(x, d) \subset \text{dep}(x, e) \Rightarrow d \in \text{dep}(x, e)$.

Conversely, $d \in \text{dep}(x, e) = B^e_j$ means $\text{dep}(x, d) \subset B^e_k$ where $k = d(B^e)$ is the position of d in B^e (since B^e_k is a tight set containing d).

It must be that $k < j$ (since B^e_j is the smallest tight set containing e, and the j’th position of B^e_j is e whose removal doesn’t remove d, leaving another tight set $B^e_j - e$ containing d).

Therefore, $\text{dep}(x, d) \subseteq B^e_k \subseteq B^e_j - e \subset B^e_j = \text{dep}(x, e)$.

As a consequence, if $d \in \text{dep}(x, e)$ then $e \notin \text{dep}(x, d)$.
The next three slides are review from lecture 11.

Tightness of \(\text{supp} \) at polymatroidal extreme point

- Now, \(\text{sat}(x) \) is tight, and corresponds to the largest member of the distributive lattice \(\mathcal{D}(x) = \{ A : x(A) = f(A) \} \) of tight sets.
- \(\text{supp}(x) \) is not necessarily tight for an arbitrary \(x \).
- When \(x \) is an extremal point, however, \(\text{supp}(x) \) is tight, meaning \(x(\text{supp}(x)) = f(\text{supp}(x)) \). Why?
 1. Extremal points are defined as a system of equalities of the form \(x(E_i) = f(E_i) \) for \(1 \leq i \leq k \leq |E| \), for some \(k \), as we saw earlier in class. Hence, any \(e_i \in \text{supp}(x) \) has \(x(e_i) = f(e_i | E_i - 1) > 0 \).
 2. Now, for \(1 \leq i \leq k \), if \(e_i \notin \text{supp}(x) \), \(x(E_k) = x(E_k - e_i) \)
 3. Also, for \(1 \leq i \leq k \), if \(e_i \notin \text{supp}(x) \), then \(0 = f(e_i | E_i - 1) \geq f(e_i | E_k - e_i) = f(E_k | E_k - e_i) \geq 0 \) since monotone submodular, hence we have \(f(E_k) = f(E_k - e_i) \).
 4. We can keep removing elements \(e_i \notin \text{supp}(x) \) and we’re left with \(f(E_k \cap \text{supp}(x)) = x(E_k \cap \text{supp}(x)) \) for any \(k \).
 5. Hence \(\text{supp}(x) \) is tight when \(x \) is extremal.
- Since \(\text{supp}(x) \) is tight, we immediately have that \(\text{sat}(x) \supseteq \text{supp}(x) \).
more Lovász extension

Lovász extension examples

Partial order of extreme points

Summary

Scratch

supp vs. sat equality

- For \(x \in P_f \), with \(x \) extremal, is \(\text{supp}(x) = \text{sat}(x) \)?
- Consider an example case where disjoint \(X, Y \subseteq E \), we have \(f(X) = f(Y) = f(X \cup Y) \) (meaning “perfect dependence” or full redundancy, so gains are not strictly positive).
- Suppose \(x \in P_f \) has \(x(X) > 0 \) but \(x(V \setminus X) = 0 \) and so \(x(Y) = 0 \).
- Then \(\text{supp}(x) = X \)
- \(\text{sat}(x) = \bigcup\{ A : x(A) = f(A) \} \) and since \(x(X \cup Y) = x(X) = f(X) = f(X \cup Y) \), here, \(\text{sat}(x) \supseteq X \cup Y \).
- In general, for extremal \(x \), \(\text{sat}(x) \supseteq \text{supp}(x) \) (see later).
- Also, recall \(\text{sat}(x) \) is like span/closure but \(\text{supp}(x) \) is more like indication. So this is similar to \(\text{span}(A) \supseteq A \).
- For modular functions, they are always equal (e.g., think of “hyperrectangular” polymatroids).

supp, sat, extremal \(x \), perfect dependence

- In general, for extremal \(x \), \(\text{sat}(x) \supseteq \text{supp}(x) \).
- Now, for any \(e \in E \setminus \text{supp}(x) \), we clearly have \(x(\text{supp}(x) + e) = x(\text{supp}(x)) \) since \(x(e) = 0 \).
- On the other hand, for \(e_i \in \text{sat}(x) \setminus \text{supp}(x) \), we have perfect dependence, i.e., \(f(\text{supp}(x) + e_i) = f(\text{supp}(x)) \). Indeed:
 - \(\text{sat}(x) \) is tight, as is \(\text{supp}(x) \), and hence \(f(\text{sat}(x)) = x(\text{sat}(x)) = x(\text{supp}(x)) = f(\text{supp}(x)) \).
 - Therefore, \(f(\text{sat}(x) | \text{supp}(x)) = 0 \).
 - But by the above, and monotonicity, we have for \(e \in \text{sat}(x) \setminus \text{supp}(x) \), that \(0 = f(\text{sat}(x) | \text{supp}(x)) \geq f(e | \text{supp}(x)) \geq 0 \).
 - Hence \(f(e | \text{supp}(x)) = 0 \), and moreover \(f(e + \text{supp}(x)) = x(e + \text{supp}(x)) = x(\text{supp}(x)) = f(\text{supp}(x)) \).
- Thus, for any extremal \(x \), with \(\text{sat}(x) \supseteq \text{supp}(x) \), we see that for \(e \in \text{sat}(x) \setminus \text{supp}(x) \), we have \(\text{supp}(x) + e \) is also tight.
- Note also, for any \(A \subseteq \text{sat}(x) \setminus \text{supp}(x) \), we have \(f(A | \text{supp}(x)) = 0 \).
Recall, for polymatroidal f, we saw earlier that for each $e \in \text{sat}(x) \setminus \text{supp}(x)$, the set $\text{supp}(x) + e$ is also tight.

Now for any point $a, b \in \text{sat}(x) \setminus \text{supp}(x)$, we have that $\text{dep}(x, a) \neq \text{dep}(x, b)$

This follows, since the minimal tight set containing a would never contain b since $f(\text{supp}(x) + a + b) = x(\text{supp}(x) + a + b) = x(\text{supp}(x) + a) = f(\text{supp}(x) + a)$ (and in this case, vice versa).

I.e., in such case, we can have for $a \in \text{sat}(x) \setminus \text{supp}(x)$, $\text{dep}(x, a) = B'_j + a$ for some ordering $B' \in \mathcal{B}(x)$, and for some j, the smallest j such that $f(B'_j + a) = f(B'_j)$, and note that $a \notin B_j$.

This gives further support to the phrase “dependence function”, namely $\text{dep}(x, a) \setminus \{a\} = B'_j$ is the smallest set that renders a dependent (again, like the fundamental circuit of a matroid).

So, for $a, b \in \text{supp}(x)$, $\text{dep}(x, a) \neq \text{dep}(x, b)$ (from Slide 32).

And for $a, b \in \text{sat}(x) \setminus \text{supp}(x)$, $\text{dep}(x, a) \neq \text{dep}(x, b)$ (from Slides 42)

What about $a \in \text{sat}(x) \setminus \text{supp}(x)$ and $b \in \text{supp}(x)$? The minimal tight set containing b would never contain a since $f(\text{supp}(x)) = x(\text{supp}(x))$ and $f(\text{supp}(x) + a) = x(\text{supp}(x) + a)$, so $\text{dep}(x, b)$ has no need for a.

Hence, for any $a, b \in \text{sat}(x)$, we have $\text{dep}(x, a) \neq \text{dep}(x, b)$.

Thus, we have 1-1 mapping between all elements of $\text{sat}(x)$ and $\text{DEP}(x) = \{\text{dep}(x, e) : e \in \text{sat}(x)\}$.
dep and partial order

- Therefore, the partial order on \(\text{DEP}(x) \) can be used to define a partial order on \(\text{sat}(x) \).
- Now, for \(d, e \in \text{sat}(x) \), when can we have that \(\text{dep}(x, d) \subseteq \text{dep}(x, e) \)?
- We already saw this on Slide 35, where this happens iff \(d \in \text{dep}(x, e) \), for \(d \neq e \).
- Recall also from Slide 35, if \(d \in \text{dep}(x, e) \) then \(e \notin \text{dep}(x, d) \).
- Thus, we can define a partial order on the elements of \(\text{sat}(x) \) as follows:

\[\text{Definition 14.5.1 (partial order on elements of } \text{sat}(x) \text{)} \]

For \(d, e \in \text{sat}(x) \), we have

\[d \preceq e \iff d \in \text{dep}(x, e) \] (14.26)

- Thus, we have just proven

\[\text{Theorem 14.5.2} \]

If \(x \in P_f \) is an extreme point, then \(\preceq \) is a partial order on \(\text{sat}(x) \) where for \(a, e \in \text{sat}(x) \), the order \(\preceq \) is defined by: \(a \preceq e \) iff \(a \in \text{dep}(x, e) \).

- In other words, \(x \in P_f \) is an extreme point \(\Rightarrow \) the construct

 \[[\text{for } a, e \in \text{sat}(x), a \preceq e \text{ iff } a \in \text{dep}(x, e)] \]

defines a partial order.

- We can show a stronger result that extreme points are characterized by this construct. I.e., following converse can be shown:

\[\text{Theorem 14.5.3} \]

\(x \in P_f \) is an extreme point iff \(\text{supp}(x) \subseteq \text{sat}(x) \) and \(\text{dep}(x, a) \neq \text{dep}(x, b) \) for every pair of distinct points \(a, b \in \text{sat}(x) \) (meaning we can define a partial order on \(\text{sat}(x) \) as above).
dep, strict submodularity, and total order

- If \(f(A) + f(B) > f(A \cup B) + f(A \cap B), \forall A, B : A \not\subseteq B, B \not\subseteq A \) (i.e., \(f \) is strictly submodular) then the above order \(\preceq \) is a total order on \(\text{sat}(x) \).

- Strictly submodular is same condition as \(f(e|A) > f(e|B) \) for all \(A \subset B \subseteq E \setminus \{e\} \).

- Now our goal is to be able to, given an extreme point \(x \in P_f \) characterize \(\preceq \), and in particular generate \(\preceq \) and thus characterize all orderings that generate \(x \).

Definition 14.5.4

Given a partial order \(\preceq \), and an ordered set \(B = (e_1, e_2, \ldots, e_k) \), then \(B \) is compatible with \(\preceq \) if \(i < j \) whenever \(e_i \preceq e_j \) (\(\equiv e_i \in \text{dep}(x, e_j) \)) and where \(e_i, e_j \) are distinct.

That is, \(B \) is compatible with \(\preceq \) if, given distinct \(e_i, e_j \),

\[e_i \preceq e_j \Rightarrow i < j. \]

Theorem 14.5.5

Let \(x \) be an extreme point of \(P_f \) and \(\preceq \) be its partial order. Let \(B \subseteq E \) be an ordered set. Then \(B \) generates \(x \) using the greedy algorithm iff we have \(\text{supp}(x) \subseteq B \subseteq \text{sat}(x) \) and \(B \) is compatible with \(\preceq \).

Proof.

- Generate \(\Rightarrow \) Compatible: Let \(B = \{b_1, \ldots, b_k\} \) generate \(x \)
 - Then \(\text{supp}(x) \subseteq B \).
 - Also, since \(B \) is tight, \(B \in \mathcal{D}(x) \), so \(B \subseteq \text{sat}(x) \).
 - Moreover, \(B_j \in \mathcal{D}(x) \) (for \(1 \leq j \leq |B| \)), so that \(\text{dep}(x, e_j) \subseteq B_j \) for \(e_j \) the \(j^{th} \) element of \(B \). Hence, any \(e_i \in \text{dep}(x, e_j) \subseteq B_j \) can’t have \(j = i \) and must have \(i < j \). So any \(e_i \preceq e_j \) has \(i < j \).
 - But \(g = e_i \not\in B_j \) means \(g \not\in \text{dep}(x, e_j) \), or \(g \not\preceq e_j \), and this also requires \(i > j \).
 - Hence, \(B \) is compatible with \(\preceq \).
the partial order of extreme points

Theorem 14.5.5

Let x be an extreme point of P_f and \preceq be its partial order. Let $B \subseteq E$ be an ordered set. Then B generates x using the greedy algorithm iff we have $\text{supp}(x) \subseteq B \subseteq \text{sat}(x)$ and B is compatible with \preceq.

Proof.

- Conversely (Compatible \Rightarrow Generate): Suppose ordering B is compatible with \preceq and that $\text{supp}(x) \subseteq B \subseteq \text{sat}(x)$.

- For each j (with $1 \leq j \leq \vert B \vert$), consider e_ℓ at position ℓ in B_j, and consider any $e \in \text{dep}(x, e_\ell)$ so $e \preceq e_\ell$. Compatibility means we must have $i < \ell$ where i is the position within B_j of e, so $e \in B_j$.

- Hence, for each $e \in B_j$, we have $\text{dep}(x, e) \subseteq B_j$.

- Thus, B_j is the union of tight sets (each of $\text{dep}(x, e)$ is tight), so that B_j is also tight (unions of tight sets are tight).

- That is, we have $x(B_j) = f(B_j), 1 \leq j \leq \vert B \vert$.

- Thus x is generated by greedy using ordering given in B.

Corollary 14.5.6

If x is an extreme point of P_f and $B \subseteq E$ is given such that $\text{supp}(x) \subseteq B \subseteq \text{sat}(x)$, then x is generated using greedy by some ordering of B.

- this is a more satisfying way to, given an extreme point, show that the greedy algorithm can generate it than to resort to the polyhedral $cv = \max(cx : x \in P_f)$ for an appropriate direction c.

- Moreover, we can produce an efficient $O(|E|^2)$ algorithm that can produce \preceq for any extreme point x of P_f.

- The algorithm does so by, for each $e \in \text{sat}(x)$, producing the sets $\text{dep}(x, e)$ (or otherwise terminating by saying that x is not an extreme point).

- Thus, extreme point testing is fundamentally computationally simpler than arbitrary membership testing (recall, to test if $x \in P_f$ in general, we needed submodular function minimization).
Extreme point testing and partial order generation

input: Vector $x \in \mathbb{R}^E$, polymatroid function f on E.

output: That x is not extreme point, or if it is, minimal tight sets $\text{dep}(x, e)$ for $e \in \text{sat}(x)$ thus defining \preceq. Moreover, $\text{dep}(x, e_j) = A_j$ for $1 \leq j \leq n$ where $n = |\text{sat}(x)|$.

```
1  j ← 0 ; B ← ∅ ;
2  while true do
3      j ← j + 1 ;
4      if $\exists e \in E \setminus B$ with $x(B + e) = f(B + e)$ then
5          B ← B + e ; e_j ← e ;
6      else
7          STOP, if supp($x$) $\subseteq B$ then $x$ is extreme, otherwise not.
8      A_j ← B ; k ← j − 1 ;
9      while $x(A_j - e_k) = f(A_j - e_k)$ and $k > 0$ do
10         A_j ← A_j − e_k ; k ← k − 1 ;
```

On partial order algorithm

- Lines 4-5 just arbitrarily adds elements, maintaining tightness of B.
- Lines 9-10 remove elements from A_j while retaining tightness (thus achieving $\text{dep}(x, e_j)$).
- Algorithm uses f only to test tightness of a set relative to a vector x, nothing more (i.e., line 4 could be a query on if $B + e$ is tight).
- Line 7 reports non-extreme if condition supp(x) $\subseteq B \subseteq \text{sat}(x)$ violated ($\text{sat}(x)$ condition implicit).
- Line 1 is $O(|E|)$, and nested lines 4 (and 9) are each $O(|E|)$, so algorithm runs in $O(|E|^2)$ doing that many function evaluations.
- Thus, extreme point testing is fundamentally computationally simpler than arbitrary membership testing (recall, to test if $x \in P_f$ in general, we needed submodular function minimization).
- To determine, only, if a given x is extreme, we can delete lines 8-10 (having same run time).
- If desired, we can generate all orderings consistent with a partial ordering using an algorithm by Knuth/Szwarcfiter-1974.
- To prove correctness, we need a few theorems.
Maximal in a tight set

Theorem 14.5.7

Given an extreme point \(x \in P_f \), with \(A \) tight for \(x \), and if given order \(\preceq \) element \(e \in A \) is maximal, then \(A - e \) is also tight.

Proof.

- Since \(A \) is tight, \(\forall a \in A, \text{dep}(x, a) \subseteq A \), and \(\bigcup_{a \in A} \text{dep}(x, a) = A \).
- If \(e \) is maximal in \(A \) w.r.t. \(\preceq \), then there exists no \(a \in A \setminus \{e\} \), such that \(e \preceq a \) (i.e., \(e \in \text{dep}(x, a) \)). I.e., \(e \notin \text{dep}(x, a) \) for any \(a \in A \setminus \{e\} \).
- Thus, \(\text{dep}(x, a) \subseteq A \setminus \{e\} \) for all \(a \in A \setminus \{e\} \).
- Now, since \(\text{dep}(x, a) \) is the smallest \(x \)-tight set containing \(a \) and \(\text{dep}(x, a) \subseteq A \setminus \{e\} \), we have
 \[
 \bigcup_{a \in A\setminus\{e\}} \text{dep}(x, a) = A \setminus \{e\}
 \]
 (14.27)
- Hence, \(A \setminus \{e\} \) is therefore also tight.

We also have

Corollary 14.5.8

For all \(e \in \text{sat}(x) \), we have that \(\text{dep}(x, e) \setminus \{e\} \) is also tight.

Proof.

- \(\text{dep}(x, e) \) is tight and \(e \) is maximal within \(\text{dep}(x, e) \).
- This theorem and corollary allow us to prove that the above algorithm gives us not only the minimum sets containing \(e \) but the minimum tight sets with \(e \), i.e., \(\text{dep}(x, e) \).
The output of Algorithm 1 is as asserted in the statement of the algorithm.

Proof.

- First, we prove that x is an extreme point iff the algorithm terminates with $\text{supp}(x) \subseteq B$.
 - The algorithm maintains tightness for all sets B so constructed.
 - If we terminate with $\text{supp}(x) \subseteq B$, then the resulting ordering $B = \{e_1, e_2, \ldots, e_k\}$ generates all of x due to the tight equations $x(E_i) = f(E_i)$, $1 \leq i \leq k$ so x is extreme.
 - Conversely, suppose $\text{supp}(x) \setminus B \neq \emptyset$ but x is still extreme.
 - Hence, for any $a \in \text{supp}(x) \setminus B$, the set $B + a$ is not tight.
 - Now, $\text{supp}(x) \setminus B$ has a minimal element according to \preceq, say b.
 - So, $\exists c \in \text{supp}(x) \setminus B$ with $c \in \text{dep}(x, b)$ (i.e., $c \preceq b$). Thus $\text{dep}(x, b) \cap (\text{sat}(x) \setminus B) = \emptyset$. Hence, $\text{dep}(x, b) \subseteq B + b$.
 - $\text{dep}(x, b)$ is minimal tight set containing b. B is also a tight set. Hence $\text{dep}(x, b) \cup B = B + b$ is a tight set, a contradiction.

... proof of Thm 14.5.9 continued.

- Next, assume that x is found to be extreme. We need to show that we get $\text{dep}(x, e_j) = A_j$ for $e_j \in \text{sat}(x)$, with $1 \leq j \leq n = |\text{sat}(x)|$.
 - Each A_j is tight since each B in the algorithm is tight.
 - $e_j \in A_j$, so $\text{dep}(x, e_j) \subseteq A_j$.
 - Suppose $\text{dep}(x, e_j) \neq A_j$, and let b be maximal according to \preceq within $A_j \setminus \text{dep}(x, e_j)$, meaning $b \preceq c$ for any $c \in A_j \setminus \text{dep}(x, e_j)$.
 - But then b is also maximal in A_j since $b \notin \text{dep}(x, e_j)$ (i.e., $b \preceq c$ for any $c \in \text{dep}(x, e_j)$).
 - Hence, by Theorem 14.5.7, $A_j - b$ is also tight.
 - But if $A_j - b$ is tight, then b would have been removed by line 10 of the algorithm. Hence, $b \in A_j \setminus \text{dep}(x, e_j)$ existing is a contradiction to what the algorithm does.
 - Hence, $\text{dep}(x, e_j) = A_j$.

...
Algorithm Correctness

... proof of Thm 14.5.9 continued.

- Last thing we need is to show that we get \(\text{dep}(x, e) \) for all \(e \in \text{sat}(x) \), which is equivalent to having \(B = \text{sat}(x) \) at termination.
 - \(B \) being tight means that \(B \subseteq \text{sat}(x) \), and also at termination we have \(\text{supp}(x) \subseteq B \subseteq \text{sat}(x) \).
 - \(\text{sat}(x) \) is the maximal tight set, so \(x(\text{sat}(x)) = f(\text{sat}(x)) \).
 - We saw earlier that \(f(\text{sat}(x) \setminus \text{supp}(x)|\text{supp}(x)) = 0 \) when \(x \) is extreme, which implies that \(f(A|\text{supp}(x)) = 0 \) for any \(A \subseteq \text{sat}(x) \setminus \text{supp}(x) \).
 - Of course, for any \(A \subseteq \text{sat}(x) \setminus \text{supp}(x) \), we have \(x(\text{supp}(x) + A) = x(\text{supp}(x)) \).
 - So, starting with a tight \(B \supseteq \text{supp}(x) \), we can make singleton additions to \(B \) retaining tightness, and the algorithm won’t be forced to stop doing that until it adds all of \(\text{sat}(x) \setminus \text{supp}(x) \).

On Greedy, and linear programming max

Theorem 14.5.10

Let \(y \in P_f \) be an extreme point, and let \(\preceq \) be the partial order of \(y \). Let \(c \in \mathbb{R}^E \). Then, \(y \) is the solution in:

\[
c^\top y = \max \{ c^\top x : x \in P_f \}
\]

iff the following three conditions hold:

1. \(c(e) \geq 0 \) for every \(e \in \text{supp}(y) \)
2. \(c(e) \leq 0 \) for every \(e \in E \setminus \text{sat}(y) \), and
3. For \(d, e \in \text{sat}(y) \) and \(d \preceq e \) imply that \(c(d) \geq c(e) \).
Separators and directed graph

- Given extreme point \(x \in P_f \), the ordering \(\preceq \) associated with \(x \) can produce a directed graph \(D = (E, F) \) where \(E \) are the vertices of the graph and \((e_1, e_2) \in F\) is a directed edge of the graph iff \(e_1 \) covers \(e_2 \) (meaning \(e_2 \preceq e_1 \)).
- A separator \(A \) of \(f \) is a set such that \(f(E) = f(A) + f(E \setminus A) \). Hence, the polytope on axes \(A, E \setminus A \) is hyperrectangular.
- The elementary separators correspond to the minimal non-empty separators, i.e., \(E_1, E_2, \ldots, E_k \) such that \(\bigcup_{i=1}^{k} E_k = E \) and \(f(E) = \sum_{i=1}^{k} f(E_k) \) and where no further refinement of this partition has this property.
- Hence, for any \(A \subseteq E \), we have
 \[
 f(A) = \sum_{i=1}^{k} f(A \cap E_k) \tag{14.29}
 \]
 So “dependence” lives only within an \(E_i \) but not between two \(E_i, E_j \) for \(i \neq j \).
- This is often important in practice (e.g., graph cut has \(|E_i| = 2 \)).

We can compute the elementary separators by constructing a directed graph for an ordering \(\preceq \). In fact:

Theorem 14.5.11

Let \(x \) be an extreme point of \(P_f \) where \(x \) generated by an ordering of the entire set \(E \). Let \(D \) be the directed graph of \(\preceq \) of \(x \). Then the elementary separators of \(f \) are the vertex-sets of the connected components of \(D \).

In order to implement an algorithm for the Theorem, we need to compute an extreme point \(x \), then the associated directed graph \(D \), and finally its connected components. \(x \) may be computed using the greedy algorithm for *any* ordering of \(E \)!
Sources for Today’s Lecture
