Announcements, Assignments, and Reminders

- Reminder: class web page is at our web page (http://j.ee.washington.edu/~bilmes/classes/ee596a_fall_2012/)

- Please do use our discussion board (https://catalyst.uw.edu/gopost/board/bilmes/29948/) for all questions, comments, so that all will benefit from them being answered.
Outstanding Reading

- Read chapter 1 from Fujishige book.
- Read over lecture slides, all posted on our web page (http://j.ee.washington.edu/~bilmes/classes/ee596a_fall_2012/).
- See the summary slide at the end for some additional ideas for reading. A good summary of matroid properties is http://www-math.mit.edu/~goemans/18433S09/matroid-notes.pdf
Submodular Definitions

Definition 4.2.4 (submodular concave)

A function \(f : 2^V \rightarrow \mathbb{R} \) is submodular if for any \(A, B \subseteq V \), we have that:

\[
f(A) + f(B) \geq f(A \cup B) + f(A \cap B)
\]

(4.7)

An alternate and (as we see in lecture 3) equivalent definition is:

Definition 4.2.5 (diminishing returns)

A function \(f : 2^V \rightarrow \mathbb{R} \) is submodular if for any \(A \subseteq B \subset V \), and \(v \in V \setminus B \), we have that:

\[
f(A \cup \{v\}) - f(A) \geq f(B \cup \{v\}) - f(B)
\]

(4.8)

This means that the incremental “value”, “gain”, or “cost” of \(v \) decreases (diminishes) as the context in which \(v \) is considered grows from \(A \) to \(B \).
An alternate and equivalent definition is:

Definition 4.2.6 (group diminishing returns)

A function $f : 2^V \rightarrow \mathbb{R}$ is submodular if for any $A \subseteq B \subset V$, and $C \subseteq V \setminus B$, we have that:

$$f(A \cup C) - f(A) \geq f(B \cup C) - f(B) \quad (4.24)$$

This means that the incremental “value” or “gain” of set C decreases as the context in which v is considered grows from A to B (diminishing returns)
We want to show that **Submodular Concave** (Definition 4.2.4), **Diminishing Returns** (Definition 4.2.5), and **Group Diminishing Returns** (Definition 4.2.6) are identical. We will show that:

- Submodular Concave \Rightarrow Diminishing Returns
- Diminishing Returns \Rightarrow Group Diminishing Returns
- Group Diminishing Returns \Rightarrow Submodular Concave
Proof.

- Assume Submodular concave, so \(\forall A, B \) we have
 \[f(A) + f(B) \geq f(A \cup B) + f(A \cap B). \]

- Given \(A, B \) and \(v \in V \) such that: \(A \subseteq B \subseteq V \setminus \{v\} \), we have from submodular concave that:
 \[f(A + v) + f(B) \geq f(B + v) + f(A) \quad (4.24) \]

- Rearranging, we have
 \[f(A + v) - f(A) \geq f(B + v) - f(B) \quad (4.25) \]
Proof.

Let $C = \{c_1, c_2, \ldots, c_k\}$. Then diminishing returns implies

$$f(A \cup C) - f(A)$$

$$= f(A \cup C) - \sum_{i=1}^{k-1} \left(f(A \cup \{c_1, \ldots, c_i\}) - f(A \cup \{c_1, \ldots, c_i\}) \right) - f(A) \quad (4.24)$$

$$= \sum_{i=1}^{k} f(A \cup \{c_1 \ldots c_i\}) - f(A \cup \{c_1 \ldots c_{i-1}\}) \quad (4.25)$$

$$\geq \sum_{i=1}^{k} f(B \cup \{c_1 \ldots c_i\}) - f(B \cup \{c_1 \ldots c_{i-1}\}) \quad (4.26)$$

$$= f(B \cup C) - \sum_{i=1}^{k-1} \left(f(B \cup \{c_1, \ldots, c_i\}) - f(B \cup \{c_1, \ldots, c_i\}) \right) - f(B) \quad (4.27)$$

$$= f(B \cup C) - f(B) \quad (4.28)$$

$$= f(B \cup C) - f(B) \quad (4.29)$$
Proof.

Assume group diminishing returns. Assume \(A \neq B \) otherwise trivial. Define \(A' = A \cap B \), \(C = A \setminus B \), and \(B' = B \). Then

\[
f(A' + C) - f(A') \geq f(B' + C) - f(B') \tag{4.24}
\]
giving

\[
f(A' + C) + f(B') \geq f(B' + C) + f(A') \tag{4.25}
\]
or

\[
f(A \cap B + A \setminus B) + f(B) \geq f(B + A \setminus B) + f(A \cap B) \tag{4.26}
\]

which is the same as the submodular concave condition

\[
f(A) + f(B) \geq f(A \cup B) + f(A \cap B) \tag{4.27}
\]
Many (Equivalent) Definitions of Submodularity

\[f(A) + f(B) \geq f(A \cup B) + f(A \cap B), \quad \forall A, B \subseteq E \quad (4.30) \]

\[f(j|S) \geq f(j|T), \quad \forall S \subseteq T \subseteq E, \text{ with } j \in E \setminus T \quad (4.31) \]

\[f(C|S) \geq f(C|T), \forall S \subseteq T \subseteq E, \text{ with } C \subseteq E \setminus T \quad (4.32) \]

\[f(j|S) \geq f(j|S \cup \{k\}), \forall S \subseteq E \text{ with } j \in E \setminus (S \cup \{k\}) \quad (4.33) \]

\[f(T) \leq f(S) + \sum_{j \in T \setminus S} f(j|S) - \sum_{j \in S \setminus T} f(j|S \cup T - \{j\}), \forall S, T \subseteq E \quad (4.34) \]

\[f(T) \leq f(S) + \sum_{j \in T \setminus S} f(j|S), \forall S \subseteq T \subseteq E \quad (4.35) \]

\[f(T) \leq f(S) - \sum_{j \in S \setminus T} f(j|S \setminus \{j\}) + \sum_{j \in T \setminus S} f(j|S \cap T) \forall S, T \subseteq E \quad (4.36) \]

\[f(T) \leq f(S) - \sum_{j \in S \setminus T} f(j|S \setminus \{j\}), \forall T \subseteq S \subseteq E \quad (4.37) \]
Independent set definition of a matroid is perhaps most natural. Note, if \(J \in \mathcal{I} \), then \(J \) is said to be an independent set.

Definition 4.2.8 (Matroid)

A set system \((E, \mathcal{I})\) is a **Matroid** if

- (I1) \(\emptyset \in \mathcal{I} \)
- (I2) \(\forall I \in \mathcal{I}, J \subset I \Rightarrow J \in \mathcal{I} \)
- (I3) \(\forall I, J \in \mathcal{I}, \text{ with } |I| = |J| + 1, \text{ then there exists } x \in I \setminus J \text{ such that } J \cup \{x\} \in \mathcal{I} \).
Matroid

Slight modification (non unit increment) that is equivalent.

Definition 4.2.8 (Matroid-II)

A set system \((E, \mathcal{I})\) is a **Matroid** if

(I1') \(\emptyset \in \mathcal{I}\)

(I2') \(\forall I \in \mathcal{I}, J \subset I \Rightarrow J \in \mathcal{I}\) (or “down-closed”)

(I3') \(\forall I, J \in \mathcal{I}, \text{ with } |I| > |J|, \text{ then there exists } x \in I \setminus J \text{ such that } J \cup \{x\} \in \mathcal{I}\)

Note (I1)≡(I1'), (I2)≡(I2'), and we get (I3)≡(I3') using induction.
Why do we call the $f(A) + f(B) \geq f(A \cup B) + f(A \cap B)$ definition of submodularity, submodular concave?
Why do we call the \(f(A) + f(B) \geq f(A \cup B) + f(A \cap B) \) definition of submodularity, submodular concave?

A continuous twice differentiable function \(f : \mathbb{R}^n \rightarrow \mathbb{R} \) is concave iff \(\nabla^2 f \preceq 0 \) (the Hessian matrix is nonpositive definite).
Submodular Concave

- Why do we call the \(f(A) + f(B) \geq f(A \cup B) + f(A \cap B) \) definition of submodularity, submodular concave?
- A continuous twice differentiable function \(f : \mathbb{R}^n \rightarrow \mathbb{R} \) is concave iff \(\nabla^2 f \preceq 0 \) (the Hessian matrix is nonpositive definite).
- Define a “discrete derivative” or difference operator defined on discrete functions \(f : 2^V \rightarrow \mathbb{R} \) as follows:
 \[
 (\nabla_B f)(A) \triangleq f(A \cup B) - f(A \setminus B) = f(B|A \setminus B)
 \]
 read as: the derivative of \(f \) at \(A \) in the direction \(B \).
Submodular Concave

- Why do we call the \(f(A) + f(B) \geq f(A \cup B) + f(A \cap B) \) definition of submodularity, submodular concave?
- A continuous twice differentiable function \(f : \mathbb{R}^n \to \mathbb{R} \) is concave iff \(\nabla^2 f \preceq 0 \) (the Hessian matrix is nonpositive definite).
- Define a “discrete derivative” or difference operator defined on discrete functions \(f : 2^V \to \mathbb{R} \) as follows:

\[
(\nabla_B f)(A) \triangleq f(A \cup B) - f(A \setminus B) = f(B | (A \setminus B)) \tag{4.1}
\]

read as: the derivative of \(f \) at \(A \) in the direction \(B \).
- Hence, if \(A \cap B = \emptyset \), then \((\nabla_B f)(A) = f(B | A) \).
Submodular Concave

- Why do we call the \(f(A) + f(B) \geq f(A \cup B) + f(A \cap B) \) definition of submodularity, submodular concave?
- A continuous twice differentiable function \(f : \mathbb{R}^n \to \mathbb{R} \) is concave iff \(\nabla^2 f \preceq 0 \) (the Hessian matrix is nonpositive definite).
- Define a “discrete derivative” or difference operator defined on discrete functions \(f : 2^V \to \mathbb{R} \) as follows:
 \[
 (\nabla_B f)(A) \overset{\Delta}{=} f(A \cup B) - f(A \setminus B) = f(B|A \setminus B) \tag{4.1}
 \]
 read as: the derivative of \(f \) at \(A \) in the direction \(B \).
- Hence, if \(A \cap B = \emptyset \), then \((\nabla_B f)(A) = f(B|A) \).
- Consider a form of second derivative or 2nd difference:
 \[
 (\nabla_C \nabla_B f)(A) = \nabla_C [f(A \cup B) - f(A \setminus B)]
 = f(A \cup B \cup C) - f((A \cup C) \setminus B)
 \]
 \[
 - f((A \setminus C) \cup B) + f((A \setminus C) \setminus B) \tag{4.2}
 \]
Submodular Concave

- If the second difference operator everywhere nonpositive:

\[
\begin{align*}
 f(A \cup B \cup C) - f((A \cup C) \setminus B) - \\
 f((A \setminus C) \cup B) + f(A \setminus C \setminus B) \leq 0
\end{align*}
\] (4.3)
If the second difference operator everywhere nonpositive:

\[
f(A \cup B \cup C) - f((A \cup C) \setminus B) \\
- f((A \setminus C) \cup B) + f(A \setminus C \setminus B) \leq 0
\]

(4.3)

then we have the equation:

\[
f((A \cup C) \setminus B) + f((A \setminus C) \cup B) \geq f(A \cup B \cup C) + f(A \setminus C \setminus B)
\]

(4.4)
If the second difference operator everywhere nonpositive:

\[f(A \cup B \cup C) - f((A \cup C) \setminus B) \]
\[- f((A \setminus C) \cup B) + f(A \setminus C \setminus B) \leq 0 \]

(4.3)

then we have the equation:

\[f((A \cup C) \setminus B) + f((A \setminus C) \cup B) \geq f(A \cup B \cup C) + f(A \setminus C \setminus B) \]

(4.4)

Define \(A' = (A \cup C) \setminus B \) and \(B' = (A \setminus C) \cup B \). Then the above implies:

\[f(A') + f(B') \geq f(A' \cup B') + f(A' \cap B') \]

(4.5)

and note that \(A' \) and \(B' \) so defined can be arbitrary.
Submodular Concave

- If the second difference operator everywhere nonpositive:

\[
 f(A \cup B \cup C) - f((A \cup C) \setminus B) \\
- f((A \setminus C) \cup B) + f(A \setminus C \setminus B) \leq 0
\]

(4.3)

then we have the equation:

\[
 f((A \cup C) \setminus B) + f((A \setminus C) \cup B) \geq f(A \cup B \cup C) + f(A \setminus C \setminus B)
\]

(4.4)

- Define \(A' = (A \cup C) \setminus B \) and \(B' = (A \setminus C) \cup B \). Then the above implies:

\[
 f(A') + f(B') \geq f(A' \cup B') + f(A' \cap B')
\]

(4.5)

and note that \(A' \) and \(B' \) so defined can be arbitrary.

- One sense in which submodular functions are like concave functions.
Submodular Concave

(a) \(A' = (A \cup C) \setminus B \)

(b) \(B' = (A \setminus C) \cup B \)

Figure: A figure showing \(A' \cup B' = A \cup B \cup C \) and \(A' \cap B' = A \setminus C \setminus B \).
(c) \(A' = (A \cup C) \setminus B \)

(d) \(B' = (A \setminus C) \cup B \)

Figure: A figure showing \(A' \cup B' = A \cup B \cup C \) and \(A' \cap B' = A \setminus C \setminus B \).
Given a matroid $M = (E, \mathcal{I})$, a subset $A \subseteq E$ is called independent if $A \in \mathcal{I}$ and otherwise A is called dependent.
Given a matroid $M = (E, \mathcal{I})$, a subset $A \subseteq E$ is called \textit{independent} if $A \in \mathcal{I}$ and otherwise A is called \textit{dependent}.

For $U \subseteq E$, a subset $B \subseteq U$ is called a \textit{base} of U if B is inclusionwise maximally independent subset of U. That is, $B \in \mathcal{I}$ and there is no $Z \in \mathcal{I}$ with $B \subset Z \subseteq U$.
Matroids

- Given a matroid $M = (E, \mathcal{I})$, a subset $A \subseteq E$ is called independent if $A \in \mathcal{I}$ and otherwise A is called dependent.

- For $U \subseteq E$, a subset $B \subseteq U$ is called a base of U if B is inclusionwise maximally independent subset of U. That is, $B \in \mathcal{I}$ and there is no $Z \in \mathcal{I}$ with $B \subset Z \subseteq U$.

- If $U = E$, then a “base of E” is just called a base of the matroid M (this corresponds to a basis in a linear space).
Matroids - important property

Proposition 4.4.1

In a matroid $M = (E, I)$, for any $U \subseteq E(M)$, any two bases of U have the same size.
Proposition 4.4.1

In a matroid $M = (E, \mathcal{I})$, for any $U \subseteq E(M)$, any two bases of U have the same size.

- In matrix terms, given a set of vectors U, all sets of independent vectors that span the space spanned by U have the same size.
Proposition 4.4.1

In a matroid $M = (E, \mathcal{I})$, for any $U \subseteq E(M)$, any two bases of U have the same size.

- In matrix terms, given a set of vectors U, all sets of independent vectors that span the space spanned by U have the same size.
- In fact, under (I1),(I2), this condition is equivalent to (I3). Exercise: show this.
Matroids - important property

Proposition 4.4.1

In a matroid $M = (E, \mathcal{I})$, for any $U \subseteq E(M)$, any two bases of U have the same size.

- In matrix terms, given a set of vectors U, all sets of independent vectors that span the space spanned by U have the same size.
- In fact, under (I1),(I2), this condition is equivalent to (I3). Exercise: show this
- The common size of all the bases of U is called the rank of U, denoted $r_M(U)$ or just $r(U)$ when the matroid in equation is unambiguous.
Proposition 4.4.1

In a matroid $M = (E, I)$, for any $U \subseteq E(M)$, any two bases of U have the same size.

- In matrix terms, given a set of vectors U, all sets of independent vectors that span the space spanned by U have the same size.
- In fact, under (I1),(I2), this condition is equivalent to (I3). Exercise: show this.
- The common size of all the bases of U is called the rank of U, denoted $r_M(U)$ or just $r(U)$ when the matroid in equation is unambiguous.
- $r(E) = r(E,I)$ is the rank of the matroid, and is the common size of all the bases of the matroid.
We can a bit more formally define the rank function this way.

Definition 4.4.2

The rank of a matroid is a function \(r : 2^E \rightarrow \mathbb{Z}_+ \) defined by

\[
r(A) = \max \{ |X| : X \subseteq A, X \in \mathcal{I} \}
\]

(4.6)
We can a bit more formally define the rank function this way.

Definition 4.4.2

The rank of a matroid is a function $r : 2^E \to \mathbb{Z}_+$ defined by

$$r(A) = \max \{ |X| : X \subseteq A, X \in \mathcal{I} \}$$

(4.6)

- From the above, we immediately see that $r(A) \leq |A|$.
We can a bit more formally define the rank function this way.

Definition 4.4.2

The rank of a matroid is a function \(r : 2^E \rightarrow \mathbb{Z}_+ \) defined by

\[
r(A) = \max \{|X| : X \subseteq A, X \in \mathcal{I}\}
\]

(4.6)

- From the above, we immediately see that \(r(A) \leq |A| \).
- Moreover, if \(r(A) = |A| \), then \(A \in \mathcal{I} \), meaning \(A \) is independent (in this case, \(A \) is a self base).
Lemma 4.4.3

The rank function \(r : 2^E \rightarrow \mathbb{Z}_+ \) of a matroid is submodular, that is
\[
r(A) + r(B) \geq r(A \cup B) + r(A \cap B)
\]
Lemma 4.4.3

The rank function \(r : 2^E \to \mathbb{Z}_+ \) of a matroid is submodular, that is \(r(A) + r(B) \geq r(A \cup B) + r(A \cap B) \).

Proof.

1. Let \(X \in \mathcal{I} \) be an inclusionwise maximal set with \(X \subseteq A \cap B \).
Lemma 4.4.3

The rank function \(r : 2^E \rightarrow \mathbb{Z}_+ \) of a matroid is submodular, that is
\[
r(A) + r(B) \geq r(A \cup B) + r(A \cap B)
\]

Proof.

1. Let \(X \in \mathcal{I} \) be an inclusionwise maximal set with \(X \subseteq A \cap B \).
2. Let \(Y \in \mathcal{I} \) be inclusionwise maximal set with \(X \subseteq Y \subseteq A \cup B \). (We can find such a \(Y \supseteq X \) because, starting from \(X \subseteq A \cup B \), and since \(|Y| \geq |X|\), we can choose a \(y \in Y \subseteq A \cup B \) such that \(X + y \in \mathcal{I} \) but since \(y \in A \cup B \), also \(X + y \in A \cup B \). We can keep doing this while \(|Y| > |X|\) since this is a matroid.)
Lemma 4.4.3

The rank function $r : 2^E \to \mathbb{Z}_+$ of a matroid is submodular, that is $r(A) + r(B) \geq r(A \cup B) + r(A \cap B)$

Proof.

1. Let $X \in \mathcal{I}$ be an inclusionwise maximal set with $X \subseteq A \cap B$.
2. Let $Y \in \mathcal{I}$ be inclusionwise maximal set with $X \subseteq Y \subseteq A \cup B$.
3. Since M is a matroid, we know that $r(A \cap B) = r(X) = |X|$, and $r(A \cup B) = r(Y) = |Y|$. Also, for any $U \in \mathcal{I}$, $r(A) \geq |A \cap U|$.
Lemma 4.4.3

The rank function \(r : 2^E \to \mathbb{Z}_+ \) of a matroid is submodular, that is
\[
r(A) + r(B) \geq r(A \cup B) + r(A \cap B)
\]

Proof.

1. Let \(X \in \mathcal{I} \) be an inclusionwise maximal set with \(X \subseteq A \cap B \).
2. Let \(Y \in \mathcal{I} \) be inclusionwise maximal set with \(X \subseteq Y \subseteq A \cup B \).
3. Since \(M \) is a matroid, we know that \(r(A \cap B) = r(X) = |X| \), and \(r(A \cup B) = r(Y) = |Y| \). Also, for any \(U \in \mathcal{I} \), \(r(A) \geq |A \cap U| \).
4. Then we have
\[
r(A) + r(B) \geq |X| + |Y| = r(A \cap B) + r(A \cup B)
\]
Lemma 4.4.3

The rank function \(r : 2^E \rightarrow \mathbb{Z}_+ \) of a matroid is submodular, that is
\[
r(A) + r(B) \geq r(A \cup B) + r(A \cap B)
\]

Proof.

1. Let \(X \in \mathcal{I} \) be an inclusionwise maximal set with \(X \subseteq A \cap B \)
2. Let \(Y \in \mathcal{I} \) be inclusionwise maximal set with \(X \subseteq Y \subseteq A \cup B \).
3. Since \(M \) is a matroid, we know that \(r(A \cap B) = r(X) = |X| \), and \(r(A \cup B) = r(Y) = |Y| \). Also, for any \(U \in \mathcal{I} \), \(r(A) \geq |A \cap U| \).
4. Then we have
\[
r(A) + r(B) \geq |Y \cap A| + |Y \cap B| \quad (4.7)
\]
Lemma 4.4.3

The rank function $r : 2^E \rightarrow \mathbb{Z}_+$ of a matroid is submodular, that is
$$r(A) + r(B) \geq r(A \cup B) + r(A \cap B)$$

Proof.

1. Let $X \in \mathcal{I}$ be an inclusionwise maximal set with $X \subseteq A \cap B$.
2. Let $Y \in \mathcal{I}$ be inclusionwise maximal set with $X \subseteq Y \subseteq A \cup B$.
3. Since M is a matroid, we know that $r(A \cap B) = r(X) = |X|$, and $r(A \cup B) = r(Y) = |Y|$. Also, for any $U \in \mathcal{I}$, $r(A) \geq |A \cap U|$.
4. Then we have

$$r(A) + r(B) \geq |Y \cap A| + |Y \cap B|$$

$$\quad = |Y \cap (A \cap B)| + |Y \cap (A \cup B)|$$

(4.7)

(4.8)
Matroids - rank

Lemma 4.4.3

The rank function \(r : 2^E \rightarrow \mathbb{Z}_+ \) of a matroid is submodular, that is
\[
\text{rank}(A) + \text{rank}(B) \geq \text{rank}(A \cup B) + \text{rank}(A \cap B)
\]

Proof.

1. Let \(X \in \mathcal{I} \) be an inclusionwise maximal set with \(X \subseteq A \cap B \).
2. Let \(Y \in \mathcal{I} \) be inclusionwise maximal set with \(X \subseteq Y \subseteq A \cup B \).
3. Since \(M \) is a matroid, we know that \(\text{rank}(A \cap B) = \text{rank}(X) = |X| \), and \(\text{rank}(A \cup B) = \text{rank}(Y) = |Y| \). Also, for any \(U \in \mathcal{I} \), \(\text{rank}(A) \geq |A \cap U| \).
4. Then we have
\[
\text{rank}(A) + \text{rank}(B) \geq |Y \cap A| + |Y \cap B|
\]
\[
= |Y \cap (A \cap B)| + |Y \cap (A \cup B)|
\]
\[
\geq |X| + |Y| = \text{rank}(A \cap B) + \text{rank}(A \cup B)
\]
In fact, we can use the rank of a matroid for its definition.

Theorem 4.4.4 (Matroid from rank)

Let E be a set and let $r : 2^E \to \mathbb{Z}_+$ be a function. Then $r(\cdot)$ defines a matroid with r being its rank function if and only if for all $A, B \subseteq E$:

(R1) $\forall A \subseteq E \ 0 \leq r(A) \leq |A|$ (non-negative cardinality bounded)
(R2) $r(A) \leq r(B)$ whenever $A \subseteq B \subseteq E$ (monotone non-decreasing)
(R3) $r(A \cup B) + r(A \cap B) \leq r(A) + r(B)$ for all $A, B \subseteq E$ (submodular)

- So submodularity and non-negative monotone non-decreasing, and unit increase is necessary and sufficient to define the matroid.
- Given above, unit increment (if $r(A) = k$, then either $r(A \cup \{v\}) = k$ or $r(A \cup \{v\}) = k + 1$) holds.
- A matroid is sometimes given as (E, r) where E is ground set and r is rank function.
Matroids

In fact, we can use the rank of a matroid for its definition.

Theorem 4.4.4 (Matroid from rank)

Let E be a set and let $r : 2^E \rightarrow \mathbb{Z}_+$ be a function. Then $r(\cdot)$ defines a matroid with r being its rank function if and only if for all $A, B \subseteq E$:

(R1) $\forall A \subseteq E \quad 0 \leq r(A) \leq |A|$ (non-negative cardinality bounded)

(R2) $r(A) \leq r(B)$ whenever $A \subseteq B \subseteq E$ (monotone non-decreasing)

(R3) $r(A \cup B) + r(A \cap B) \leq r(A) + r(B)$ for all $A, B \subseteq E$ (submodular)

- From above, $r(\emptyset) = 0$. Let $v \notin A$, then by monotonicity and submodularity, $r(A) \leq r(A \cup \{v\}) \leq r(A) + r(\{v\})$ which gives only two possible values to $r(A \cup \{v\})$.

Prof. Jeff Bilmes
EE596A/Fall 2012/Submodularity – Lecture 4 - October 5th, 2012 page 4-23 (of 140)
Matroids from rank

Proof of Theorem 4.4.4 (matroid from rank).

- Given a matroid $M = (E, I)$, we see its rank function as defined in Eq. 4.6 satisfies (R1), (R2), and, as we saw in Lemma 4.4.3, (R3) too.
Matroids from rank

Proof of Theorem 4.4.4 (matroid from rank).

- Given a matroid \(M = (E, \mathcal{I}) \), we see its rank function as defined in Eq. 4.6 satisfies (R1), (R2), and, as we saw in Lemma 4.4.3, (R3) too.

- Next, assume we have (R1), (R2), and (R3). Define \(\mathcal{I} = \{ X \subseteq E : r(X) = |X| \} \). We will show that \((E, \mathcal{I})\) is a matroid.
Proof of Theorem 4.4.4 (matroid from rank).

- Given a matroid $M = (E, \mathcal{I})$, we see its rank function as defined in Eq. 4.6 satisfies (R1), (R2), and, as we saw in Lemma 4.4.3, (R3) too.

- Next, assume we have (R1), (R2), and (R3). Define $\mathcal{I} = \{X \subseteq E : r(X) = |X|\}$. We will show that (E, \mathcal{I}) is a matroid.

- First, $\emptyset \in \mathcal{I}$.
Given a matroid $M = (E, \mathcal{I})$, we see its rank function as defined in Eq. 4.6 satisfies (R1), (R2), and, as we saw in Lemma 4.4.3, (R3) too.

Next, assume we have (R1), (R2), and (R3). Define $\mathcal{I} = \{X \subseteq E : r(X) = |X|\}$. We will show that (E, \mathcal{I}) is a matroid.

First, $\emptyset \in \mathcal{I}$.

Also, if $Y \in \mathcal{I}$ and $X \subseteq Y$ then by submodularity,
Matroids from rank

Proof of Theorem 4.4.4 (matroid from rank).

- Given a matroid $M = (E, \mathcal{I})$, we see its rank function as defined in Eq. 4.6 satisfies (R1), (R2), and, as we saw in Lemma 4.4.3, (R3) too.

- Next, assume we have (R1), (R2), and (R3). Define $\mathcal{I} = \{X \subseteq E : r(X) = |X|\}$. We will show that (E, \mathcal{I}) is a matroid.

- First, $\emptyset \in \mathcal{I}$.

- Also, if $Y \in \mathcal{I}$ and $X \subseteq Y$ then by submodularity,

$$r(X) \geq r(Y) - r(Y \setminus X) \quad (4.10)$$
Matroids from rank

Proof of Theorem 4.4.4 (matroid from rank).

- Given a matroid $M = (E, I)$, we see its rank function as defined in Eq. 4.6 satisfies (R1), (R2), and, as we saw in Lemma 4.4.3, (R3) too.

- Next, assume we have (R1), (R2), and (R3). Define $I = \{ X \subseteq E : r(X) = |X| \}$. We will show that (E, I) is a matroid.

- First, $\emptyset \in I$.

- Also, if $Y \in I$ and $X \subseteq Y$ then by submodularity,

$$r(X) \geq r(Y) - r(Y \setminus X) - r(\emptyset) \quad (4.10)$$
Proof of Theorem 4.4.4 (matroid from rank).

- Given a matroid \(M = (E, \mathcal{I}) \), we see its rank function as defined in Eq. 4.6 satisfies (R1), (R2), and, as we saw in Lemma 4.4.3, (R3) too.

- Next, assume we have (R1), (R2), and (R3). Define \(\mathcal{I} = \{ X \subseteq E : r(X) = |X| \} \). We will show that \((E, \mathcal{I}) \) is a matroid.

- First, \(\emptyset \in \mathcal{I} \).

- Also, if \(Y \in \mathcal{I} \) and \(X \subseteq Y \) then by submodularity,

\[
\begin{align*}
 r(X) &\geq r(Y) - r(Y \setminus X) - r(\emptyset) \\
 &\geq |Y| - |Y \setminus X|
\end{align*}
\]
Matroids from rank

Proof of Theorem 4.4.4 (matroid from rank).

- Given a matroid $M = (E, I)$, we see its rank function as defined in Eq. 4.6 satisfies (R1), (R2), and, as we saw in Lemma 4.4.3, (R3) too.

- Next, assume we have (R1), (R2), and (R3). Define $I = \{X \subseteq E : r(X) = |X|\}$. We will show that (E, I) is a matroid.

- First, $\emptyset \in I$.

- Also, if $Y \in I$ and $X \subseteq Y$ then by submodularity,

$$r(X) \geq r(Y) - r(Y \setminus X) - r(\emptyset) \quad (4.10)$$

$$\geq |Y| - |Y \setminus X| \quad (4.11)$$

$$= |X| \quad (4.12)$$
Matroids from rank

Proof of Theorem 4.4.4 (matroid from rank).

- Given a matroid $M = (E, \mathcal{I})$, we see its rank function as defined in Eq. 4.6 satisfies (R1), (R2), and, as we saw in Lemma 4.4.3, (R3) too.

- Next, assume we have (R1), (R2), and (R3). Define
 \[\mathcal{I} = \{ X \subseteq E : r(X) = |X| \} \]. We will show that (E, \mathcal{I}) is a matroid.

- First, $\emptyset \in \mathcal{I}$.

- Also, if $Y \in \mathcal{I}$ and $X \subseteq Y$ then by submodularity,
 \[
 r(X) \geq r(Y) - r(Y \setminus X) - r(\emptyset) \\
 \geq |Y| - |Y \setminus X| \\
 = |X|
 \]

 implying $r(X) = |X|$, and thus $X \in \mathcal{I}$.

Proof of Theorem 4.4.4 (matroid from rank) cont.

- Let $A, B \in \mathcal{I}$, with $|A| < |B|$, so $r(A) = |A| < r(B) = |B|$. Let $B \setminus A = \{b_1, b_2, \ldots, b_k\}$.

Proof of Theorem 4.4.4 (matroid from rank) cont.

- Let \(A, B \in \mathcal{I} \), with \(|A| < |B| \), so \(r(A) = |A| < r(B) = |B| \). Let \(B \setminus A = \{b_1, b_2, \ldots, b_k\} \).

- Suppose, to the contrary, that \(\forall b \in B \setminus A, r(A + b) \notin \mathcal{I} \), which means for all such \(b \), \(r(A + b) = r(A) = |A| \). Then
Proof of Theorem 4.4.4 (matroid from rank) cont.

- Let $A, B \in \mathcal{I}$, with $|A| < |B|$, so $r(A) = |A| < r(B) = |B|$. Let $B \setminus A = \{b_1, b_2, \ldots, b_k\}$.

- Suppose, to the contrary, that $\forall b \in B \setminus A$, $r(A + b) \notin \mathcal{I}$, which means for all such b, $r(A + b) = r(A) = |A|$. Then

$$r(B) \leq r(A \cup B) \quad (4.13)$$
Proof of Theorem 4.4.4 (matroid from rank) cont.

- Let $A, B \in \mathcal{I}$, with $|A| < |B|$, so $r(A) = |A| < r(B) = |B|$. Let $B \setminus A = \{b_1, b_2, \ldots, b_k\}$.

- Suppose, to the contrary, that $\forall b \in B \setminus A$, $r(A + b) \notin \mathcal{I}$, which means for all such b, $r(A + b) = r(A) = |A|$. Then

 \[
 r(B) \leq r(A \cup B) \leq r(A \cup (B \setminus \{b_1\})) + r(A \cup \{b_1\}) - r(A)
 \]
 (4.13)
 (4.14)
Proof of Theorem 4.4.4 (matroid from rank) cont.

Let \(A, B \in \mathcal{I} \), with \(|A| < |B| \), so \(r(A) = |A| < r(B) = |B| \). Let \(B \setminus A = \{b_1, b_2, \ldots, b_k\} \).

Suppose, to the contrary, that \(\forall b \in B \setminus A, r(A + b) \notin \mathcal{I} \), which means for all such \(b \), \(r(A + b) = r(A) = |A| \). Then

\[
\begin{align*}
 r(B) & \leq r(A \cup B) \quad (4.13) \\
 & \leq r(A \cup (B \setminus \{b_1\})) + r(A \cup \{b_1\}) - r(A) \quad (4.14) \\
 & = r(A \cup (B \setminus \{b_1\})) \quad (4.15)
\end{align*}
\]
Let $A, B \in \mathcal{I}$, with $|A| < |B|$, so $r(A) = |A| < r(B) = |B|$. Let $B \setminus A = \{b_1, b_2, \ldots, b_k\}$.

Suppose, to the contrary, that $\forall b \in B \setminus A$, $r(A + b) \notin \mathcal{I}$, which means for all such b, $r(A + b) = r(A) = |A|$. Then

$$r(B) \leq r(A \cup B)$$

$$\leq r(A \cup (B \setminus \{b_1\})) + r(A \cup \{b_1\}) - r(A)$$

$$= r(A \cup (B \setminus \{b_1\}))$$

$$\leq r(A \cup (B \setminus \{b_1, b_2\})) + r(A \cup \{b_2\}) - r(A)$$
Let $A, B \in \mathcal{I}$, with $|A| < |B|$, so $r(A) = |A| < r(B) = |B|$. Let $B \setminus A = \{b_1, b_2, \ldots, b_k\}$.

Suppose, to the contrary, that $\forall b \in B \setminus A$, $r(A + b) \notin \mathcal{I}$, which means for all such b, $r(A + b) = r(A) = |A|$. Then

$$r(B) \leq r(A \cup B)$$

$$\leq r(A \cup (B \setminus \{b_1\})) + r(A \cup \{b_1\}) - r(A)$$

$$= r(A \cup (B \setminus \{b_1\}))$$

$$\leq r(A \cup (B \setminus \{b_1, b_2\})) + r(A \cup \{b_2\}) - r(A)$$

$$= r(A \cup (B \setminus \{b_1, b_2\}))$$

giving a contradiction since $B \in \mathcal{I}$.

Proof of Theorem 4.4.4 (matroid from rank) cont.
Let \(A, B \in \mathcal{I} \), with \(|A| < |B| \), so \(r(A) = |A| < r(B) = |B| \). Let \(B \setminus A = \{b_1, b_2, \ldots, b_k\} \).

Suppose, to the contrary, that \(\forall b \in B \setminus A, r(A + b) \notin \mathcal{I} \), which means for all such \(b \), \(r(A + b) = r(A) = |A| \). Then

\[
\begin{align*}
 r(B) & \leq r(A \cup B) \\
 & \leq r(A \cup (B \setminus \{b_1\})) + r(A \cup \{b_1\}) - r(A) \\
 & = r(A \cup (B \setminus \{b_1\})) \\
 & \leq r(A \cup (B \setminus \{b_1, b_2\})) + r(A \cup \{b_2\}) - r(A) \\
 & = r(A \cup (B \setminus \{b_1, b_2\})) \\
 & \leq \ldots \leq r(A) = |A| < |B|
\end{align*}
\]
Let $A, B \in \mathcal{I}$, with $|A| < |B|$, so $r(A) = |A| < r(B) = |B|$. Let $B \setminus A = \{b_1, b_2, \ldots, b_k\}$.

Suppose, to the contrary, that $\forall b \in B \setminus A$, $r(A + b) \notin \mathcal{I}$, which means for all such b, $r(A + b) = r(A) = |A|$. Then

\begin{align*}
 r(B) & \leq r(A \cup B) \\
 & \leq r(A \cup (B \setminus \{b_1\})) + r(A \cup \{b_1\}) - r(A) \quad (4.13) \\
 & = r(A \cup (B \setminus \{b_1\})) \quad (4.14) \\
 & \leq r(A \cup (B \setminus \{b_1, b_2\})) + r(A \cup \{b_2\}) - r(A) \quad (4.15) \\
 & = r(A \cup (B \setminus \{b_1, b_2\})) \quad (4.16) \\
 & \leq \ldots \leq r(A) = |A| < |B| \quad (4.17) \\

giving a contradiction since $B \in \mathcal{I}$.
\end{align*}
Another way of using function r to define a matroid.

Theorem 4.4.5 (Matroid from rank II)

Let E be a finite set and let $r : 2^E \rightarrow \mathbb{Z}_+$ be a function. Then $r(\cdot)$ defines a matroid with r being its rank function if and only if for all $A \subseteq E$, and $x, y \in E$:

(R1') $r(\emptyset) = 0$;

(R2') $r(X) \leq r(X \cup \{y\}) \leq r(X) + 1$;

(R3') If $r(X \cup \{x\}) = r(X \cup \{y\}) = r(X)$, then $r(X \cup \{x, y\}) = r(X)$.
Definition 4.4.6 (closed/flat/subspace)

A subset $A \subseteq E$ is closed or a flat or a subspace of matroid M if for all $x \in E \setminus A$, $r(A \cup \{x\}) = r(A) + 1$.
Definition 4.4.6 (closed/flat/subspace)

A subset $A \subseteq E$ is closed or a flat or a subspace of matroid M if for all $x \in E \setminus A$, $r(A \cup \{x\}) = r(A) + 1$.

Definition 4.4.7 (closure)

Given $A \subseteq E$, the closure (or span) of A, is defined by $\text{span}(A) = \{b \in E : r(A \cup \{b\}) = r(A)\}$.
Matroids, other definitions using matroid rank $r : 2^V \rightarrow \mathbb{Z}_+$

Definition 4.4.6 (closed/flat/subspace)

A subset $A \subseteq E$ is closed or a flat or a subspace of matroid M if for all $x \in E \setminus A$, $r(A \cup \{x\}) = r(A) + 1$.

Definition 4.4.7 (closure)

Given $A \subseteq E$, the closure (or span) of A, is defined by $\text{span}(A) = \{ b \in E : r(A \cup \{b\}) = r(A) \}$.

Therefore, a closed set A has $\text{span}(A) = A$.
Matroids, other definitions using matroid rank $r : 2^V \rightarrow \mathbb{Z}_+$

Definition 4.4.6 (closed/flat/subspace)

A subset $A \subseteq E$ is closed or a flat or a subspace of matroid M if for all $x \in E \setminus A$, $r(A \cup \{x\}) = r(A) + 1$.

Definition 4.4.7 (closure)

Given $A \subseteq E$, the closure (or span) of A, is defined by

$$\text{span}(A) = \{ b \in E : r(A \cup \{b\}) = r(A) \}.$$

Therefore, a closed set A has $\text{span}(A) = A$.

Definition 4.4.8 (circuit)

A subset $A \subseteq E$ is circuit or a cycle if it is an inclusionwise minimally dependent set (i.e., if $r(A) < |A|$ and for any $a \in A$, $r(A \setminus \{a\}) = |A| - 1$).

In general, besides independent sets and rank functions, there are other equivalent ways to characterize matroids.
Theorem 4.4.9 (Matroid (by bases))

Let E be a set and \mathcal{B} be a nonempty collection of subsets of E. Then the following are equivalent.

1. \mathcal{B} is the collection of bases of a matroid;
2. if $B, B' \in \mathcal{B}$, and $x \in B' \setminus B$, then $B' - x + y \in \mathcal{B}$ for some $y \in B \setminus B'$.
3. if $B, B' \in \mathcal{B}$, and $x \in B' \setminus B$, then $B - y + x \in \mathcal{B}$ for some $y \in B \setminus B'$.

Properties 2 and 3 are called “exchange properties.”
Matroids by bases

Theorem 4.4.9 (Matroid (by bases))

Let E be a set and \mathcal{B} be a nonempty collection of subsets of E. Then the following are equivalent.

1. \mathcal{B} is the collection of bases of a matroid;
2. if $B, B' \in \mathcal{B}$, and $x \in B' \setminus B$, then $B' - x + y \in \mathcal{B}$ for some $y \in B \setminus B'$.
3. If $B, B' \in \mathcal{B}$, and $x \in B' \setminus B$, then $B - y + x \in \mathcal{B}$ for some $y \in B \setminus B'$.

Properties 2 and 3 are called “exchange properties.”

Proof here is omitted but think about this for a moment in terms of linear spaces and matrices, and (alternatively) spanning trees.
A set is independent if and only if it contains no circuit. Therefore, it is not surprising that circuits can also characterize a matroid.

Theorem 4.4.10 (Matroid by circuits)

Let E be a set and C be a collection of nonempty subsets of E, such that no two sets in C are contained in each other. Then the following are equivalent.

1. C is the collection of circuits of a matroid;
2. if $C, C' \in C$, and $x \in C \cap C'$, then $(C \cup C') \setminus \{x\}$ contains a set in C;
3. if $C, C' \in C$, and $x \in C \cap C'$, and $y \in C \setminus C'$, then $(C \cup C') \setminus \{x\}$ contains a set in C containing y;
Matroids by circuits

A set is independent if and only if it contains no circuit. Therefore, it is not surprising that circuits can also characterize a matroid.

Theorem 4.4.10 (Matroid by circuits)

Let E be a set and C be a collection of nonempty subsets of E, such that no two sets in C are contained in each other. Then the following are equivalent.

1. C is the collection of circuits of a matroid;
2. if $C, C' \in C$, and $x \in C \cap C'$, then $(C \cup C') \setminus \{x\}$ contains a set in C;
3. if $C, C' \in C$, and $x \in C \cap C'$, and $y \in C \setminus C'$, then $(C \cup C') \setminus \{x\}$ contains a set in C containing y;

Again, think about this for a moment in terms of linear spaces and matrices, and spanning trees.
Summarizing what we’ve so far seen, we saw that it is possible to uniquely define a matroid based on any of:

- Independence (define the independent sets).
Summarizing what we’ve so far seen, we saw that it is possible to uniquely define a matroid based on any of:

- Independence (define the independent sets).
- Rank axioms (normalized, monotone, cardinality bounded, submodular)
Summarizing what we’ve so far seen, we saw that it is possible to uniquely define a matroid based on any of:

- Independence (define the independent sets).
- Rank axioms (normalized, monotone, cardinality bounded, submodular)
- Base axioms (exchangeability)
Summarizing what we’ve so far seen, we saw that it is possible to uniquely define a matroid based on any of:

- Independence (define the independent sets).
- Rank axioms (normalized, monotone, cardinality bounded, submodular)
- Base axioms (exchangeability)
- Circuit axioms
Summarizing what we’ve so far seen, we saw that it is possible to uniquely define a matroid based on any of:

- Independence (define the independent sets).
- Rank axioms (normalized, monotone, cardinality bounded, submodular)
- Base axioms (exchangeability)
- Circuit axioms
- Closure axioms (we didn’t see this yesterday, but it is possible)
Maximization problems for matroids

- Given a matroid $M = (E, \mathcal{I})$ and a modular cost function $c : E \rightarrow \mathbb{R}$, the task is to find an $X \in \mathcal{I}$ such that
 $c(X) = \sum_{x \in X} c(x)$ is maximum.

- This seems remarkably similar to the max spanning tree problem.
Minimization problems for matroids

- Given a matroid $M = (E, \mathcal{I})$ and a modular cost function $c : E \rightarrow \mathbb{R}$, the task is to find a basis $B \in \mathcal{B}$ such that $c(B)$ is minimized.

- This sounds like a set cover problem (find the minimum cost covering set of sets).
Uniform Matroid

- Given E, consider \mathcal{I} to be all subsets of E that are at most size k. That is $\mathcal{I} = \{ A \subseteq E : |A| \leq k \}$.

Given E, consider \mathcal{I} to be all subsets of E that are at most size k. That is $\mathcal{I} = \{ A \subseteq E : |A| \leq k \}$.

Rank function $r(A) = \begin{cases} |A| & \text{if } |A| \leq k \\ k & \text{if } |A| > k \end{cases}$

Therefore, this function is submodular. Not surprising since $r(A) = \min(|A|, k)$ which is a non-decreasing concave function applied to a modular function.

Closure function $\text{span}(A) = \begin{cases} A & \text{if } |A| < k \\ E & \text{if } |A| \geq k \end{cases}$

A "free" matroid sets $k = |E|$, so everything is independent.
Uniform Matroid

- Given E, consider \mathcal{I} to be all subsets of E that are at most size k.
 That is $\mathcal{I} = \{A \subseteq E : |A| \leq k\}$.
- Then (E, \mathcal{I}) is a matroid called a k-uniform matroid.
Uniform Matroid

- Given E, consider \mathcal{I} to be all subsets of E that are at most size k. That is $\mathcal{I} = \{ A \subseteq E : |A| \leq k \}$.
- Then (E, \mathcal{I}) is a matroid called a k-uniform matroid.
- Note, if $I, J \in \mathcal{I}$, and $|I| < |J| \leq k$, and $j \in J$ such that $j \not\in I$, then j is such that $|I + j| \leq k$ and so $I + j \in \mathcal{I}$.
Uniform Matroid

Given E, consider \mathcal{I} to be all subsets of E that are at most size k.
That is $\mathcal{I} = \{A \subseteq E : |A| \leq k\}$.
Then (E, \mathcal{I}) is a matroid called a k-uniform matroid.
Note, if $I, J \in \mathcal{I}$, and $|I| < |J| \leq k$, and $j \in J$ such that $j \notin I$,
then j is such that $|I + j| \leq k$ and so $I + j \in \mathcal{I}$.

Rank function

$$r(A) = \begin{cases} |A| & \text{if } |A| \leq k \\ k & \text{if } |A| > k \end{cases} \quad (4.19)$$
Uniform Matroid

- Given E, consider \mathcal{I} to be all subsets of E that are at most size k. That is $\mathcal{I} = \{A \subseteq E : |A| \leq k\}$.
- Then (E, \mathcal{I}) is a matroid called a k-uniform matroid.
- Note, if $I, J \in \mathcal{I}$, and $|I| < |J| \leq k$, and $j \in J$ such that $j \not\in I$, then j is such that $|I + j| \leq k$ and so $I + j \in \mathcal{I}$.
- Rank function

$$r(A) = \begin{cases} |A| & \text{if } |A| \leq k \\ k & \text{if } |A| > k \end{cases} \quad (4.19)$$

- Therefore, this function is submodular. Not surprising since $r(A) = \min(|A|, k)$ which is a non-decreasing concave function applied to a modular function.
Uniform Matroid

Given E, consider \mathcal{I} to be all subsets of E that are at most size k.
That is $\mathcal{I} = \{ A \subseteq E : |A| \leq k \}$.
Then (E, \mathcal{I}) is a matroid called a k-uniform matroid.

Note, if $I, J \in \mathcal{I}$, and $|I| < |J| \leq k$, and $j \in J$ such that $j \not\in I$,
then j is such that $|I + j| \leq k$ and so $I + j \in \mathcal{I}$.

Rank function

$$r(A) = \begin{cases} |A| & \text{if } |A| \leq k \\ k & \text{if } |A| > k \end{cases}$$ (4.19)

Therefore, this function is submodular. Not surprising since $r(A) = \min(|A|, k)$ which is a non-decreasing concave function applied to a modular function.

Closure function

$$\text{span}(A) = \begin{cases} A & \text{if } |A| < k, \\ E & \text{if } |A| \geq k, \end{cases}$$ (4.20)
Uniform Matroid

- Given E, consider \mathcal{I} to be all subsets of E that are at most size k. That is $\mathcal{I} = \{ A \subseteq E : |A| \leq k \}$.
- Then (E, \mathcal{I}) is a matroid called a k-uniform matroid.
- Note, if $I, J \in \mathcal{I}$, and $|I| < |J| \leq k$, and $j \in J$ such that $j \not\in I$, then j is such that $|I + j| \leq k$ and so $I + j \in \mathcal{I}$.
- Rank function

$$r(A) = \begin{cases} |A| & \text{if } |A| \leq k \\ k & \text{if } |A| > k \end{cases} \quad (4.19)$$

- Therefore, this function is submodular. Not surprising since $r(A) = \min(|A|, k)$ which is a non-decreasing concave function applied to a modular function.
- Closure function

$$\text{span}(A) = \begin{cases} A & \text{if } |A| < k, \\ E & \text{if } |A| \geq k \end{cases} \quad (4.20)$$

- A “free” matroid sets $k = |E|$, so everything is independent.
Let \mathbf{X} be an $n \times m$ matrix and $E = \{1, \ldots, m\}$
Linear (or Matric) Matroid

- Let X be an $n \times m$ matrix and $E = \{1, \ldots, m\}$
- Let \mathcal{I} consists of subsets of E such that if $A \in \mathcal{I}$, and $A = \{a_1, a_2, \ldots, a_k\}$ then the vectors $x_{a_1}, x_{a_2}, \ldots, x_{a_k}$ are linearly independent.
Linear (or Matric) Matroid

- Let X be an $n \times m$ matrix and $E = \{1, \ldots, m\}$
- Let \mathcal{I} consists of subsets of E such that if $A \in \mathcal{I}$, and $A = \{a_1, a_2, \ldots, a_k\}$ then the vectors $x_{a_1}, x_{a_2}, \ldots, x_{a_k}$ are linearly independent.
- the rank function is just the rank of the space spanned by the corresponding set of vectors.
Linear (or Matric) Matroid

- Let X be an $n \times m$ matrix and $E = \{1, \ldots, m\}$
- Let \mathcal{I} consists of subsets of E such that if $A \in \mathcal{I}$, and $A = \{a_1, a_2, \ldots, a_k\}$ then the vectors $x_{a_1}, x_{a_2}, \ldots, x_{a_k}$ are linearly independent.
- The rank function is just the rank of the space spanned by the corresponding set of vectors.
- Rank is submodular, it is intuitive that it satisfies the diminishing returns property (a given vector can only become linearly dependent in a greater context, thereby no longer contributing to rank).
Linear (or Matric) Matroid

- Let X be an $n \times m$ matrix and $E = \{1, \ldots, m\}$

- Let \mathcal{I} consists of subsets of E such that if $A \in \mathcal{I}$, and $A = \{a_1, a_2, \ldots, a_k\}$ then the vectors $x_{a_1}, x_{a_2}, \ldots, x_{a_k}$ are linearly independent.

- The rank function is just the rank of the space spanned by the corresponding set of vectors.

- Rank is submodular, it is intuitive that it satisfies the diminishing returns property (a given vector can only become linearly dependent in a greater context, thereby no longer contributing to rank).

- Called both linear matroids and matric matroids.
Let $G = (V, E)$ be a graph. Consider (E, I) where the edges of the graph E are the ground set and $A \in I$ if the edge-induced graph $G(V, A)$ by A does not contain any cycle.
Cycle Matroid of a graph: Graphic Matroids

Let $G = (V, E)$ be a graph. Consider (E, \mathcal{I}) where the edges of the graph E are the ground set and $A \in \mathcal{I}$ if the edge-induced graph $G(V, A)$ by A does not contain any cycle.

Then $M = (E, \mathcal{I})$ is a matroid.
Cycle Matroid of a graph: Graphic Matroids

- Let $G = (V, E)$ be a graph. Consider (E, I) where the edges of the graph E are the ground set and $A \in I$ if the edge-induced graph $G(V, A)$ by A does not contain any cycle.
- Then $M = (E, I)$ is a matroid.
- I contains all forests.
Let $G = (V, E)$ be a graph. Consider (E, \mathcal{I}) where the edges of the graph E are the ground set and $A \in \mathcal{I}$ if the edge-induced graph $G(V, A)$ by A does not contain any cycle.

Then $M = (E, \mathcal{I})$ is a matroid.

\mathcal{I} contains all forests.

Bases are spanning forests (spanning trees if G is connected).
Cycle Matroid of a graph: Graphic Matroids

- Let $G = (V, E)$ be a graph. Consider (E, I) where the edges of the graph E are the ground set and $A \in I$ if the edge-induced graph $G(V, A)$ by A does not contain any cycle.
- Then $M = (E, I)$ is a matroid.
- I contains all forests.
- Bases are spanning forests (spanning trees if G is connected).
- Rank function $r(A)$ is the size of the largest spanning forest contained in $G(V, A)$.
Let $G = (V, E)$ be a graph. Consider (E, \mathcal{I}) where the edges of the graph E are the ground set and $A \in \mathcal{I}$ if the edge-induced graph $G(V, A)$ by A does not contain any cycle.

Then $M = (E, \mathcal{I})$ is a matroid.

\mathcal{I} contains all forests.

Bases are spanning forests (spanning trees if G is connected).

Rank function $r(A)$ is the size of the largest spanning forest contained in $G(V, A)$.

Closure function adds all edges between the vertices adjacent to any edge in A. Closure of a spanning forest is G.

Partition Matroid

- Let V be our ground set.
Partition Matroid

- Let V be our ground set.
- Let $V = V_1 \cup V_2 \cup \cdots \cup V_\ell$ be a partition of V into blocks or disjoint sets (disjoint union). Define a set of subsets of V as

\[I = \{ X \subseteq V : |X \cap V_i| \leq k_i \text{ for all } i = 1, \ldots, \ell \}. \quad (4.21) \]

where k_1, \ldots, k_ℓ are fixed parameters, $k_i \geq 0$. Then $M = (V, I)$ is a matroid.
Partition Matroid

- Let V be our ground set.
- Let $V = V_1 \cup V_2 \cup \cdots \cup V_\ell$ be a partition of V into blocks or disjoint sets (disjoint union). Define a set of subsets of V as
 \[I = \{ X \subseteq V : |X \cap V_i| \leq k_i \text{ for all } i = 1, \ldots, \ell \}. \]
 (4.21)
 where k_1, \ldots, k_ℓ are fixed parameters, $k_i \geq 0$. Then $M = (V, I)$ is a matroid.
- Note that a k-uniform matroid is a trivial example of a partition matroid with $\ell = 1$, $V_1 = V$, and $k_1 = k$.
Partition Matroid

- Let \(V \) be our ground set.
- Let \(V = V_1 \cup V_2 \cup \cdots \cup V_\ell \) be a partition of \(V \) into blocks or disjoint sets (disjoint union). Define a set of subsets of \(V \) as

\[
\mathcal{I} = \{ X \subseteq V : |X \cap V_i| \leq k_i \text{ for all } i = 1, \ldots, \ell \}.
\]

(4.21)

where \(k_1, \ldots, k_\ell \) are fixed parameters, \(k_i \geq 0 \). Then \(M = (V, \mathcal{I}) \) is a matroid.

- Note that a \(k \)-uniform matroid is a trivial example of a partition matroid with \(\ell = 1, V_1 = V \), and \(k_1 = k \).

- We’ll show that property (I3’) in Def 4.2.8 holds. If \(X, Y \in \mathcal{I} \) with \(|Y| > |X| \), then there must be at least one \(i \) with \(|Y \cap V_i| > |X \cap V_i| \). Therefore, adding one element \(e \in V_i \cap (Y \setminus X) \) to \(X \) won’t break independence.
What is the partition matroid’s rank function?
What is the partition matroid’s rank function?

A partition matroids rank function:

$$r(A) = \sum_{i=1}^{\ell} \min(|A \cap V_i|, k_i)$$

(4.22)

which we also immediately see is submodular using properties we spoke about last week. That is:
What is the partition matroid’s rank function?

A partition matroids rank function:

$$r(A) = \sum_{i=1}^{\ell} \min(|A \cap V_i|, k_i)$$

(4.22)

which we also immediately see is submodular using properties we spoke about last week. That is:

- $|A \cap V_i|$ is submodular (even modular) in A
Partition Matroid

- What is the partition matroid’s rank function?
- A partition matroids rank function:

\[r(A) = \sum_{i=1}^{\ell} \min(|A \cap V_i|, k_i) \] (4.22)

which we also immediately see is submodular using properties we spoke about last week. That is:

1. \(|A \cap V_i| \) is submodular (even modular) in \(A \)
2. \(\min(\text{submodular}(A), k_i) \) is submodular in \(A \) since \(|A \cap V_i| \) is monotone.
What is the partition matroid’s rank function?

A partition matroid’s rank function:

\[r(A) = \sum_{i=1}^{\ell} \min(|A \cap V_i|, k_i) \]

(4.22)

which we also immediately see is submodular using properties we spoke about last week. That is:

1. \(|A \cap V_i|\) is submodular (even modular) in \(A\)
2. \(\min(\text{submodular}(A), k_i)\) is submodular in \(A\) since \(|A \cap V_i|\) is monotone.
3. Sums of submodular functions are submodular.
Partition Matroid

- What is the partition matroid’s rank function?
- A partition matroid’s rank function:

$$r(A) = \sum_{i=1}^{\ell} \min(|A \cap V_i|, k_i)$$

(4.22)

which we also immediately see is submodular using properties we spoke about last week. That is:

1. $|A \cap V_i|$ is submodular (even modular) in A
2. min(submodular(A), k_i) is submodular in A since $|A \cap V_i|$ is monotone.
3. Sums of submodular functions are submodular.

- $r(A)$ is also non-negative integral monotone non-decreasing, so it defines a matroid (the partition matroid).
A partition matroid can be viewed using a bipartite graph.

Letting V denote the ground set, and V_1, V_2, \ldots the partition, the graph is $G = (V, I, E)$ where V is the ground set, I is a set of “indices”, and E is the set of edges.

$I = (I_1, I_2, \ldots, I_\ell)$ is a set of $k = \sum_{i=1}^{\ell} k_i$ nodes, grouped into ℓ clusters, where there are k_i nodes in the i^{th} group I_i.

$(v, i) \in E(G)$ iff $v \in V_j$ and $i \in I_j$.
Example where $\ell = 5$,

$$(k_1, k_2, k_3, k_4, k_5) = (2, 2, 1, 1, 3).$$
Example where $\ell = 5$,
\((k_1, k_2, k_3, k_4, k_5) = (2, 2, 1, 1, 3)\).

Recall, $\Gamma : 2^V \rightarrow \mathbb{R}$ as the neighbor function in a bipartite graph, the neighbors of X is defined as $\Gamma(X) = \{v \in V(G) \setminus X : E(X, \{v\}) \neq \emptyset\}$, and recall that $|\Gamma(X)|$ is submodular.
Example where $\ell = 5$,

$$(k_1, k_2, k_3, k_4, k_5) = (2, 2, 1, 1, 3).$$

Recall, $\Gamma : 2^V \rightarrow \mathbb{R}$ as the neighbor function in a bipartite graph, the neighbors of X is defined as $\Gamma(X) = \{v \in V(G) \setminus X : E(X, \{v\}) \neq \emptyset\}$, and recall that $|\Gamma(X)|$ is submodular.

Here, for $X \subseteq V$, we have $\Gamma(X) = \{i \in I : (v, i) \in E(G) \text{ and } v \in X\}$.
Example where $\ell = 5$, $(k_1, k_2, k_3, k_4, k_5) = (2, 2, 1, 1, 3)$.

Recall, $\Gamma : 2^V \rightarrow \mathbb{R}$ as the neighbor function in a bipartite graph, the neighbors of X is defined as $\Gamma(X) = \{v \in V(G) \setminus X : E(X, \{v\}) \neq \emptyset\}$, and recall that $|\Gamma(X)|$ is submodular.

Here, for $X \subseteq V$, we have $\Gamma(X) = \{i \in I : (v, i) \in E(G) \text{ and } v \in X\}$.

For such a constructed bipartite graph, the rank function of a partition matroid is $r(X) = \sum_{i=1}^{\ell} \min(|X \cap V_i|, k_i) = \text{maximum matching involving } X$.

\begin{itemize}
 \item \text{Partition Matroid, rank as matching}
 \item \text{Example where } \ell = 5, \quad (k_1, k_2, k_3, k_4, k_5) = (2, 2, 1, 1, 3).
 \item Recall, $\Gamma : 2^V \rightarrow \mathbb{R}$ as the neighbor function in a bipartite graph, the neighbors of X is defined as $\Gamma(X) = \{v \in V(G) \setminus X : E(X, \{v\}) \neq \emptyset\}$, and recall that $|\Gamma(X)|$ is submodular.
 \item Here, for $X \subseteq V$, we have $\Gamma(X) = \{i \in I : (v, i) \in E(G) \text{ and } v \in X\}$.
 \item For such a constructed bipartite graph, the rank function of a partition matroid is $r(X) = \sum_{i=1}^{\ell} \min(|X \cap V_i|, k_i) = \text{maximum matching involving } X$.
\end{itemize}
Laminar Matroid

- We can define a matroid with structures richer than just partitions.
We can define a matroid with structures richer than just partitions.

A set system (V, \mathcal{F}) is called a laminar family of for any two sets $A, B \in \mathcal{F}$, at least one of the three sets $A \setminus B$, $B \setminus A$, or $A \cap B$ is empty.
Laminar Matroid

- We can define a matroid with structures richer than just partitions.
- A set system \((V, \mathcal{F})\) is called a **laminar** family if for any two sets \(A, B \in \mathcal{F}\), at least one of the three sets \(A \setminus B\), \(B \setminus A\), or \(A \cap B\) is empty.
- Family is laminar if it has no two “properly intersecting” members: i.e., intersecting \(A \cap B \neq \emptyset\) and not comparable (one is not contained in the other).
We can define a matroid with structures richer than just partitions.

A set system \((V, F)\) is called a **laminar** family if for any two sets \(A, B \in F\), at least one of the three sets \(A \setminus B\), \(B \setminus A\), or \(A \cap B\) is empty.

Family is laminar if it has no two “properly intersecting” members: i.e., intersecting \(A \cap B \neq \emptyset\) and not comparable (one is not contained in the other).

Suppose we have a laminar family \(F\) of subsets of \(V\) and an integer \(k(A)\) for every set \(A \in F\).
Laminar Matroid

We can define a matroid with structures richer than just partitions.

A set system (V, \mathcal{F}) is called a laminar family of for any two sets $A, B \in \mathcal{F}$, at least one of the three sets $A \setminus B$, $B \setminus A$, or $A \cap B$ is empty.

Family is laminar if it has no two “properly intersecting” members: i.e., intersecting $A \cap B \neq \emptyset$ and not comparable (one is not contained in the other).

Suppose we have a laminar family \mathcal{F} of subsets of V and an integer $k(A)$ for every set $A \in \mathcal{F}$.

Then (V, \mathcal{I}) defines a matroid where

$$\mathcal{I} = \{ I \subseteq E : |X \cap A| \leq k(A) \text{ for all } A \in \mathcal{F} \} \quad (4.23)$$
System of Representatives

- Let \((V, \mathcal{V})\) be a set system (i.e., \(\mathcal{V} = (V_i : i \in I)\) where \(\emptyset \subset V_i \subseteq V\) for all \(i\)).
Let \((V, \mathcal{V})\) be a set system (i.e., \(\mathcal{V} = (V_i : i \in I)\) where \(\emptyset \subseteq V_i \subseteq V\) for all \(i\)).

A family \((v_i : i \in I)\) with \(v_i \in V\) for index set \(I\) is said to be a system of representatives of \(\mathcal{V}\) if \(\exists\) a bijection \(\pi : I \to I\) such that \(v_i \in V_{\pi(i)}\). \(v_i\) is the representative of set \(\pi(i)\), meaning the \(i^{th}\) representative is meant to represent set \(V_{\pi(i)}\). Consider the house of representatives, \(v_i = \text{“John Smith”}\), while \(i = \text{King County}\).
System of Representatives

- Let \((V, \mathcal{V})\) be a set system (i.e., \(\mathcal{V} = (V_i : i \in I)\) where \(\emptyset \subset V_i \subset V\) for all \(i\)).

- A family \((v_i : i \in I)\) with \(v_i \in V\) for index set \(I\) is said to be a system of representatives of \(\mathcal{V}\) if \(\exists\) a bijection \(\pi : I \rightarrow I\) such that \(v_i \in V_{\pi(i)}\).

- In a system of representatives, there is no requirement for the representatives to be distinct. I.e., we could have \(v_1 \in T\), where \(v_1\) represents both \(V_1\) and \(V_2\).
System of Representatives

- Let \((V, \mathcal{V})\) be a set system (i.e., \(\mathcal{V} = (V_i : i \in I)\) where \(\emptyset \subset V_i \subset V\) for all \(i\)).

- A family \((v_i : i \in I)\) with \(v_i \in V\) for index set \(I\) is said to be a system of representatives of \(\mathcal{V}\) if \(\exists\) a bijection \(\pi : I \rightarrow I\) such that \(v_i \in V_{\pi(i)}\).

- In a system of representatives, there is no requirement for the representatives to be distinct. I.e., we could have \(v_1 \in T\), where \(v_1\) represents both \(V_1\) and \(V_2\).

- We can view this as a bipartite graph.
System of Representatives

- We can view this as a bipartite graph. The groups of V are marked by color tags on the left, and also via right neighbors in the graph.
- Here, $\ell = 6$, and $V = (V_1, V_2, \ldots, V_6)$

 \[V = (\{e, f, h\}, \{d, e, g\}, \{b, c, e, h\}, \{a, b, h\}, \{a\}, \{a\}) \]
System of Representatives

- We can view this as a bipartite graph. The groups of V are marked by color tags on the left, and also via right neighbors in the graph.
- Here, $\ell = 6$, and $V = (V_1, V_2, \ldots, V_6) = (\{e, f, h\}, \{d, e, g\}, \{b, c, e, h\}, \{a, b, h\}, \{a\}, \{a\})$.

A system of representatives would make sure that there is a representative for each color group. For example,
System of Representatives

- We can view this as a bipartite graph. The groups of V are marked by color tags on the left, and also via right neighbors in the graph.
- Here, $\ell = 6$, and $\mathcal{V} = (V_1, V_2, \ldots, V_6)$
 $= (\{e, f, h\}, \{d, e, g\}, \{b, c, e, h\}, \{a, b, h\}, \{a\}, \{a\})$.

A system of representatives would make sure that there is a representative for each color group. For example,

The representatives are shown as colors on the left.
System of Representatives

- We can view this as a bipartite graph. The groups of V are marked by color tags on the left, and also via right neighbors in the graph.
- Here, $\ell = 6$, and $V = (V_1, V_2, \ldots, V_6)$
 $$= (\{e, f, h\}, \{d, e, g\}, \{b, c, e, h\}, \{a, b, h\}, \{a\}, \{a\}).$$

A system of representatives would make sure that there is a representative for each color group. For example,

- The representatives are shown as colors on the left.
- Here, the set of representatives is not distinct. In fact, due to the red and pink group, a distinct group of representatives is impossible (since there is only one common choice to represent both color groups).
System of Distinct Representatives

Let (V, \mathcal{V}) be a set system (i.e., $\mathcal{V} = (V_i : i \in I)$ where $V_i \subseteq V$ for all i).
System of Distinct Representatives

- Let \((V, \mathcal{V})\) be a set system (i.e., \(\mathcal{V} = (V_i : i \in I)\) where \(V_i \subseteq V\) for all \(i\)). Hence, \(|I| = |\mathcal{V}|\).
System of Distinct Representatives

- Let \((V, \mathcal{V})\) be a set system (i.e., \(\mathcal{V} = (V_k : i \in I)\) where \(V_i \subseteq V\) for all \(i\)). Hence, \(|I| = |\mathcal{V}|\).

- A family \((v_i : i \in I)\) with \(v_i \in V\) for index set \(I\) is said to be a system of distinct representatives of \(\mathcal{V}\) if \(\exists\) a bijection \(\pi : I \leftrightarrow I\) such that \(v_i \in V_{\pi(i)}\) and \(v_i \neq v_j\) for all \(i \neq j\).
System of Distinct Representatives

- Let \((V, \mathcal{V})\) be a set system (i.e., \(\mathcal{V} = (V_i : i \in I)\) where \(V_i \subseteq V\) for all \(i\)). Hence, \(|I| = |\mathcal{V}|\).

- A family \((v_i : i \in I)\) with \(v_i \in V\) for index set \(I\) is said to be a system of distinct representatives of \(\mathcal{V}\) if \(\exists\) a bijection \(\pi : I \leftrightarrow I\) such that \(v_i \in V_{\pi(i)}\) and \(v_i \neq v_j\) for all \(i \neq j\).

- In a system of distinct representatives, there is a requirement for the representatives to be distinct. Let's re-state (and rename) this as a:
System of Distinct Representatives

- Let \((V, \mathcal{V})\) be a set system (i.e., \(\mathcal{V} = (V_i : i \in I)\) where \(V_i \subseteq V\) for all \(i\)). Hence, \(|I| = |\mathcal{V}|\).

- A family \((v_i : i \in I)\) with \(v_i \in V\) for index set \(I\) is said to be a system of distinct representatives of \(\mathcal{V}\) if \(\exists\) a bijection \(\pi : I \leftrightarrow I\) such that \(v_i \in V_{\pi(i)}\) and \(v_i \neq v_j\) for all \(i \neq j\).

- In a system of distinct representatives, there is a requirement for the representatives to be distinct. Let's re-state (and rename) this as a:

Definition 4.7.1 (transversal)

Given a set system \((V, \mathcal{V})\) as defined above, a set \(T \subseteq V\) is a transversal of \(\mathcal{V}\) if there is a bijection \(\pi : T \leftrightarrow I\) such that

\[
x \in V_{\pi(x)} \text{ for all } x \in T
\]

(4.24)
System of Distinct Representatives

- Let \((V, \mathcal{V})\) be a set system (i.e., \(\mathcal{V} = (V_i : i \in I)\) where \(V_i \subseteq V\) for all \(i\)). Hence, \(|I| = |\mathcal{V}|\).
- A family \((v_i : i \in I)\) with \(v_i \in V\) for index set \(I\) is said to be a system of distinct representatives of \(\mathcal{V}\) if \(\exists\) a bijection \(\pi : I \leftrightarrow I\) such that \(v_i \in V_{\pi(i)}\) and \(v_i \neq v_j\) for all \(i \neq j\).
- In a system of distinct representatives, there is a requirement for the representatives to be distinct. Let's re-state (and rename) this as a:

Definition 4.7.1 (transversal)

Given a set system \((V, \mathcal{V})\) as defined above, a set \(T \subseteq V\) is a transversal of \(\mathcal{V}\) if there is a bijection \(\pi : T \leftrightarrow I\) such that

\[
x \in V_{\pi(x)} \text{ for all } x \in T
\]

(4.24)

- Note that due to it being a bijection, all of \(I\) and \(T\) are “covered” (so this makes things distinct).