Reminder: class web links and infrastructure

- Check in with our web page (http://j.ee.washington.edu/~bilmes/classes/ee596a_winter_2013/) for up to date announcements, homeworks, etc.
Reminder: class web links and infrastructure

- Check in with our web page (http://j.ee.washington.edu/~bilmes/classes/ee596a_winter_2013/) for up to date announcements, homeworks, etc.

- All homeworks will be due via our dropbox (https://catalyst.uw.edu/collectit/dropbox/bilmes/25379)
Reminder: class web links and infrastructure

- Check in with our web page (http://j.ee.washington.edu/~bilmes/classes/ee596a_winter_2013/) for up to date announcements, homeworks, etc.
- All homeworks will be due via our dropbox (https://catalyst.uw.edu/collectit/dropbox/bilmes/25379)
- All questions should be posted to our discussion board (https://catalyst.uw.edu/gopost/board/bilmes/31332)
Reminder: class web links and infrastructure

- Check in with our web page (http://j.ee.washington.edu/~bilmes/classes/ee596a_winter_2013/) for up to date announcements, homeworks, etc.
- All homeworks will be due via our dropbox (https://catalyst.uw.edu/collectit/dropbox/bilmes/25379)
- All questions should be posted to our discussion board (https://catalyst.uw.edu/gopost/board/bilmes/31332)
- You can contact me anonymously if you wish via anonymous email (https://catalyst.uw.edu/umail/form/bilmes/4144)
Announcements, Assignments, and Reminders

- Recall, HW was due last Monday, 1/21. Last problem required ideas of elimination, OK to turn in/update this problem this evening (but no later).

- Extra office hour today, 3:45-4:45pm.

- Will still either have video lecture makeup class, or actual lecture makeup. Stay tuned to web page/email for announcements relevant to this.
Relevant Readings: Readings/handouts

- Readings are in a sub-directory “reading_drafts” directly below our web page (http://j.ee.washington.edu/~bilmes/classes/ee596a_winter_2013/).
Relevant Readings: Readings/handouts

- Readings are in a sub-directory “reading_drafts” directly below our web page (http://j.ee.washington.edu/~bilmes/classes/ee596a_winter_2013/).

- uid is this class name (lower case) and pwd are the quarter/year of the class.
Readings are in a sub-directory “reading_drafts” directly below our web page (http://j.ee.washington.edu/~bilmes/classes/ee596a_winter_2013/).

uid is this class name (lower case) and pwd are the quarter/year of the class.

Note, the PDF file is password protected. Send me email if you have trouble (adobe reader should have no problems reading it).
Cumulative Outstanding Reading

- Read 8.1 - 8.3 in “doc.pdf”
- Read HMM section in readings.
What HMMs can do: review so far

- Observations are not i.i.d..
What HMMs can do: review so far

- Observations are not i.i.d..
- Observations are not Viterbi i.i.d..
What HMMs can do: review so far

- Observations are not i.i.d..
- Observations are not Viterbi i.i.d..
- For homogeneous case, HMM stationarity condition is dependent on underlying Markov chain stationarity condition.
What HMMs can do: review so far

- Observations are not i.i.d..
- Observations are not Viterbi i.i.d..
- For homogeneous case, HMM stationarity condition is dependent on underlying Markov chain stationarity condition.
- Graphical model for GM HMM.
Correlation over time of simple HMM

- Thus, \(\text{cov}(X_t, X_{t+h}) \) is in general not equal to zero.
- But recall, \(A^h \xrightarrow{h} 1\pi^\top \) from lecture 3, and this is a matrix with all rows equal to the stationary distribution.
- Therefore, we have

\[
\text{cov}(X_t, X_{t+h}) = \sum_{ij} \mu_i \mu_j' (A^h)_{ij} \pi_i - \left(\sum_i \mu_i \pi_i \right) \left(\sum_i \mu_i \pi_i \right)' \quad (7.13)
\]

\[
\xrightarrow{h} \sum_{ij} \mu_i \mu_j' \pi_j \pi_i - \left(\sum_i \mu_i \pi_i \right) \left(\sum_i \mu_i \pi_i \right)' = 0 \quad (7.15)
\]

- Thus, while the covariance between two observations is not necessarily zero in a HMM, once we are at the stationary distribution, this covariance goes to zero exponentially fast.
- **Exercise**: For this property to hold, must we assume a unique stationary distribution here?
Correlation over time of simple HMM

- Example of the decay in the mutual-information correlation from a real-world HMM. I.e., we see $f(\tau) = I(X_t; X_{t+\tau})$, where $I()$ is the mutual information function.
- Mutual information is stronger than correlation.
- This is compared against i.i.d. samples (high peak at $\tau = 0$ is expected).

![Graph showing correlation decay over time](image)
State Duration Modeling

- If we have multiple parallel states in series, all of which share the same observation distribution, we can construct much more interesting (multimodal) distributions.
- For example, the following left chain will have distribution as shown on the right (a mixture of negative binomial distributions).

- Other examples: very long chains, ladders, fixed-length distributions (histograms), and so on.
- HMMs can have flexible distributions, cost of extra states.
HMMs Generative Accuracy

Theorem 7.2.1 (Necessary conditions for generative HMM accuracy.)

An HMM with joint observation distribution $p_h(X_{1:T})$ will accurately model the true distribution $p(X_{1:T})$ only if the following three conditions hold for all t:

- $I_h(X_{\neg t}; Q_t) \geq I(X_t; X_{\neg t})$,
- $I_h(Q_t; X_t) \geq I(X_t; X_{\neg t})$, and
- $|D_Q| \geq 2^{I(X_t; X_{\neg t})}$

where $I_h(X_{\neg t}; Q_t)$ (resp. $I_h(Q_t; X_t)$) is the information transmission rate between $X_{\neg t}$ and Q_t (resp. Q_t and X_t) under an HMM, and $I(X_t; X_{\neg t})$ is the true information transmission rate between $I(X_t; X_{\neg t})$.
Suff conditions for HMMs Generative Accuracy

Theorem 7.3.1

Sufficient conditions for HMM accuracy. An HMM $p_h(X_{1:T})$ will accurately represent a true discrete distribution $p(X_{1:T})$ if the following conditions hold for all t:

- $H(Q_t|X_{<t}) = 0$
- $p_h(X_t = x_t|q_{x_{<t}}) = p(X_t = x_t|X_{<t} = x_{<t})$.

where $q_{x_{<t}} = f(x_{<t})$ is the unique state sub-sequence associated with $x_{<t}$.

- Quite strong and unrealistic requirements, but they guarantee accuracy nonetheless.
- Note $\{< t\} \; \overset{\Delta}{=} \; \{1, 2, \ldots, t - 1\}$
Proof: Suff cond for HMMs Generative Accuracy

Proof.

We have for all t:

$$D(p(X_t | X_{<t}) || p_h(X_t | X_{<t}))$$

(7.1)

$$= \sum_{x_{1:t}} p(x_{1:t}) \log \frac{p(x_t | x_{<t})}{p_h(x_t | x_{<t})}$$

(7.2)

$$= \sum_{x_{1:t}} p(x_{1:t}) \log \frac{p(x_t | x_{<t})}{\sum_{q_t} p_h(x_t | q_t) p_h(q_t | x_{<t})}$$

(7.3)

$$= \sum_{x_{1:t}} p(x_{1:t}) \log \frac{p(x_t | x_{<t})}{p_h(x_t | q x_{<t})}$$

(7.4)

$$= \sum_{x_{1:t}} p(x_{1:t}) \log \frac{p(x_t | x_{<t})}{p(x_t | x_{<t})}$$

(7.5)

$$= 0$$

(7.6)
It then follows, using the above equation, that:

\[
0 = \sum_t D(p(X_t|X_{<t})||p_h(X_t|X_{<t}))
\]

(7.7)

\[
= \sum_t \sum_{x_{1:t}} p(x_{1:t}) \log \frac{p(x_t|x_{<t})}{p_h(x_t|x_{<t})} = \sum_t \sum_{x_{1:T}} p(x_{1:T}) \log \frac{p(x_t|x_{<t})}{p_h(x_t|x_{<t})}
\]

(7.8)

\[
= \sum_{x_{1:T}} p(x_{1:T}) \log \frac{\prod_t p(x_t|x_{<t})}{\prod_t p_h(x_t|x_{<t})} = \sum_{x_{1:T}} p(x_{1:T}) \log \frac{p(x_{1:T})}{p_h(x_{1:T})}
\]

(7.9)

\[
= D(p(X_{1:T})||p_h(X_{1:T}))
\]

(7.10)

- Strong conditions \(H(Q_t|X_{<t}) = 0\), not likely to happen in practice.
- Is this really what we need for an HMM, generative accuracy? We’ll address this again soon.
Mealy vs. Moore Machines

Mealy vs. Moore finite state automata:

Moore machine has only one possible output for each state — the output is a function only of the current state.

Mealy machine has only one possible output for each state-input pair — given current state, the input determines both the next state and the current output.

Mealy machine: given a current state, and a next state (determined by input), there is an output. Hence, we can think of a Mealy machine as one where the output is a function of the transition between two states.
Mealy vs. Moore Machines

- **Mealy vs. Moore finite state automata:**

 - **Mealy machine has only one possible output for each state — the output is a function only of the transition between two states.**

 - **Moore machine has only one possible output for each state-input pair — given current state, the input determines both the next state and the current output.**

 - **Mealy machine:** given a current state, and a next state (determined by input), there is an output. Hence, we can think of a Mealy machine as one where the output is a function of the transition between two states.
Mealy vs. Moore Machines

- **Mealy vs. Moore finite state automata:**

 ![Diagram of Mealy vs. Moore Machines]

 - **Moore machine** has only one possible output for each state — the output is a function only of the current state.
 - **Mealy machine** has only one possible output for each state-input pair — given current state, the input determines both the next state and the current output.
Mealy vs. Moore Machines

- **Mealy vs. Moore finite state automata:**

 - Moore machine has only one possible output for each state — the output is a function only of the current state.
 - Mealy machine has only one possible output for each state-input pair — given current state, the input determines both the next state and the current output.
 - Mealy machine: given a current state, and a next state (determined by input), there is an output.
Mealy vs. Moore Machines

- Mealy vs. Moore finite state automata:
 - Moore machine has only one possible output for each state — the output is a function only of the current state.
 - Mealy machine has only one possible output for each state-input pair — given current state, the input determines both the next state and the current output.
 - Mealy machine: given a current state, and a next state (determined by input), there is an output.
 - Hence, we can think of a Mealy machine as one where the output is a function of the transition between two states.
Mealy vs. Moore HMMs

- Mealy (or Jelinek) HMMs are ones where the observation distribution is a function of the transition between states.
Mealy vs. Moore HMMs

- Mealy (or Jelinek) HMMs are ones where the observation distribution is a function of the transition between states.

- Markov transition diagram often shown with symbols on the edges between state nodes (note, this is not a graphical model, rather a labeled state-transition diagram).

\[
P(X_t | q_{t-1}, q_t)
\]
Mealy vs. Moore HMMs

- Mealy (or Jelinek) HMMs are ones where the observation distribution is a function of the transition between states.

- Moore (or Rabiner) HMMs are ones where the observation is a function of the state itself.

Markov transition diagram often shown with symbols on the edges between state nodes (note, this is not a graphical model, rather a labeled state-transition diagram).
Mealy vs. Moore HMMs

Mealy (or Jelinek) HMMs are ones where the observation distribution is a function of the transition between states.

Markov transition diagram often shown with symbols on the edges between state nodes (note, this is not a graphical model, rather a labeled state-transition diagram).

Moore (or Rabiner) HMMs are ones where the observation is a function of the state itself.

Markov transition diagram often shown with symbols on the nodes of the diagram.
Mealy vs. Moore HMMs

- Two ways to show the pronunciation model for the word “and”

Left: Moore machine, Right: Mealy machine.
Mealy vs. Moore HMMs

- Two ways to show the pronunciation model for the word “and”

Left: Moore machine, Right: Mealy machine.

- The output label on each Mealy arcs is shown as input:output and ϵ means “null”
Graphical model for Moore-HMM: as we have seen it (Q_t is a parent of X_t for each t).
Mealy vs. Moore HMMs

\[O(TN^2) \]

- Graphical model for Moore-HMM: as we have seen it \((Q_t\text{ is a parent of }X_t\text{ for each }t)\).
- Graphical model for Mealy-HMM: \(X_t\) has two parents, either \((Q_{t-1}, Q_t)\) or \((Q_t, Q_{t+1})\).
Mealy and Moore HMMs are equivalent in that they correspond to the same class of probability distributions.
Mealy vs. Moore HMMs

- Mealy and Moore HMMs are equivalent in that they correspond to the same class of probability distributions.
- Mealy → Moore conversion: cluster adjacent variables in the graphical model.
Mealy vs. Moore HMMs

- Mealy and Moore HMMs are equivalent in that they correspond to the same class of probability distributions.
- Mealy \rightarrow Moore conversion: cluster adjacent variables in the graphical model.
- More \rightarrow Mealy conversion: Use a separate arc for each possible output with observation randomness applied to the arc.
Mealy vs. Moore HMMs

- Mealy and Moore HMMs are equivalent in that they correspond to the same class of probability distributions.
- Mealy \rightarrow Moore conversion: cluster adjacent variables in the graphical model.
- More \rightarrow Mealy conversion: Use a separate arc for each possible output with observation randomness applied to the arc.
- It is sometimes more efficient, in terms of number of states, to specify a language in terms of a Mealy HMM (see parenthesis matching example in the readings).
Only one property needed for this algorithm to work, namely distributive law $ab + ac = a(b + c)$ along with factorization.

Distributive law allows sending sums inside of factors.

Nothing unique about the algebraic operations of “sum” and “product” for this to work.

Other objects and their algebraic operations have a distribute law, and in general any set of objects that is a commutative semiring will work as well.
Commutative Semirings

Definition 7.4.1

A commutative semiring is a set \mathbb{K} with two binary operators \oplus and \otimes having three axioms, for all $a, b, c \in \mathbb{K}$.

$S1$: \oplus is commutative $(a \oplus b) = (b \oplus a)$ and associative $(a \oplus b) \oplus c = a \oplus (b \oplus c)$, and \exists a unique additive identity called $\bar{0} \in \mathbb{K}$ such that $k \oplus \bar{0} = k$ for all $k \in \mathbb{K}$. I.e., (\mathbb{K}, \oplus) is a commutative monoid.

$S2$: \otimes is also associative, commutative, and \exists a unique multiplicative identity called $\bar{1} \in \mathbb{K}$ s.t. $k \otimes \bar{1} = k$ for all $k \in \mathbb{K}$ ((\mathbb{K}, \otimes) is also a commutative monoid).

$S3$: the distributive law holds: $(a \otimes b) \oplus (a \otimes c) = a \otimes (b \oplus c)$ for all $a, b, c \in \mathbb{K}$.

This, and factorization w.r.t. a graph G is all that is necessary for the message passing algorithms to work. There are many commutative semirings.
Commutative Semirings

- Additive inverse need not exist. If additive inverse exists, then we get a commutative ring ("semi-ring" since we need not have additive inverse). Note, in algebra texts, a ring often doesn’t require multiplicative identity, but we assume it exists here.
Commutative Semirings

- Additive inverse need not exist. If additive inverse exists, then we get a commutative ring ("semi-ring" since we need not have additive inverse). Note, in algebra texts, a ring often doesn’t require multiplicative identity, but we assume it exists here.

- Above definition does not mention \(0 \otimes k = 0\), but this follows from above properties since \(k \otimes k = k \otimes (k \oplus 0) = (k \otimes k) \oplus (k \otimes 0)\) so that \(k \otimes 0\) must also be an additive identity, meaning that \(k \otimes 0 = 0\).
Additive inverse need not exist. If additive inverse exists, then we get a commutative ring ("semi-ring" since we need not have additive inverse). Note, in algebra texts, a ring often doesn’t require multiplicative identity, but we assume it exists here.

Above definition does not mention $0 \otimes k = 0$, but this follows from above properties since $k \otimes k = k \otimes (k \oplus 0) = (k \otimes k) \oplus (k \otimes 0)$ so that $k \otimes 0$ must also be an additive identity, meaning that $k \otimes 0 = 0$.

This is useful with evidence with delta functions, where the delta functions multiplies by zero anything that does not abide by the evidence value.
Commutative Semirings

- Additive inverse need not exist. If additive inverse exists, then we get a commutative ring ("semi-ring" since we need not have additive inverse). Note, in algebra texts, a ring often doesn’t require multiplicative identity, but we assume it exists here.

- Above definition does not mention \(0 \otimes k = 0\), but this follows from above properties since \(k \otimes k = k \otimes (k \oplus 0) = (k \otimes k) \oplus (k \otimes 0)\) so that \(k \otimes 0\) must also be an additive identity, meaning that \(k \otimes 0 = 0\).

- This is useful with evidence with delta functions, where the delta functions multiplies by zero anything that does not abide by the evidence value.

- Same message passing protocol and message passing scheme on a junction tree will work to ensure that all clusters reach a state where they are the appropriate "marginals"
Commutative Semirings

- Additive inverse need not exist. If additive inverse exists, then we get a commutative ring ("semi-ring" since we need not have additive inverse). Note, in algebra texts, a ring often doesn’t require multiplicative identity, but we assume it exists here.

- Above definition does not mention $0 \otimes k = 0$, but this follows from above properties since $k \otimes k = k \otimes (k \oplus 0) = (k \otimes k) \oplus (k \otimes 0)$ so that $k \otimes 0$ must also be an additive identity, meaning that $k \otimes 0 = 0$.

- This is useful with evidence with delta functions, where the delta functions multiplies by zero anything that does not abide by the evidence value.

- Same message passing protocol and message passing scheme on a junction tree will work to ensure that all clusters reach a state where they are the appropriate “marginals”

- Marginals in this case dependent on ring.
Other Semi-Rings

Here, A denotes arbitrary commutative semiring, S is arbitrary finite set, Λ is arbitrary distributed lattice.

<table>
<thead>
<tr>
<th>K</th>
<th>$\langle +, 0 \rangle$</th>
<th>$\langle \cdot, 1 \rangle$</th>
<th>short name</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A</td>
<td>(+, 0)</td>
<td>semiring</td>
</tr>
<tr>
<td>2</td>
<td>$A[x]$</td>
<td>(+, 0)</td>
<td>polynomial</td>
</tr>
<tr>
<td>3</td>
<td>$A[x, y, \ldots]$</td>
<td>(+, 0)</td>
<td>polynomial</td>
</tr>
<tr>
<td>4</td>
<td>$[0, \infty)$</td>
<td>(+, 0)</td>
<td>sum-product</td>
</tr>
<tr>
<td>5</td>
<td>$[0, \infty]$</td>
<td>(min, ∞)</td>
<td>min-product</td>
</tr>
<tr>
<td>6</td>
<td>$[0, \infty)$</td>
<td>(max, 0)</td>
<td>max-product</td>
</tr>
<tr>
<td>7</td>
<td>$[0, \infty)$</td>
<td>(kmax, 0)</td>
<td>k-max-product</td>
</tr>
<tr>
<td>8</td>
<td>$[\infty, \infty]$</td>
<td>(min, ∞)</td>
<td>min-sum/tropical</td>
</tr>
<tr>
<td>9</td>
<td>$[\infty, \infty)$</td>
<td>(max, ∞)</td>
<td>max-sum</td>
</tr>
<tr>
<td>10</td>
<td>$[\infty, \infty]$</td>
<td>(LOG-ADD, ∞)</td>
<td>log</td>
</tr>
<tr>
<td>11</td>
<td>${0, 1}$</td>
<td>(OR, 0)</td>
<td>Boolean</td>
</tr>
<tr>
<td>12</td>
<td>2^S</td>
<td>(\cup, \emptyset)</td>
<td>Set</td>
</tr>
<tr>
<td>13</td>
<td>Λ</td>
<td>(\vee, 0)</td>
<td>Lattice</td>
</tr>
<tr>
<td>14</td>
<td>Λ</td>
<td>(\wedge, 1)</td>
<td>Lattice</td>
</tr>
</tbody>
</table>
Example: Viterbi/MPE

- Most-probable explanation (e.g., Viterbi assignment) is just the max-product ring.

- Here, we wish to compute

\[
\arg\max_{x_{V\setminus E}} p(x_{V\setminus E}, \bar{x}_E)
\]

(7.11)

- After message passing with the max-product ring on a junction tree, cluster functions will reach the “max-marginal” state, where we have:

\[
\psi_C(x_C) = \max_{x_{V\setminus C}} p(x_C, x_{V\setminus C})
\]

(7.12)

- What about a “\(k\)-max” operation (i.e., finding the \(k\) highest scoring assignments to the variables?) How would we define the operators “\(\oplus\)” and “\(\otimes\)”?
We know Viterbi-decoding/MPE for HMMs.

\[
q_{1:T}^*(1) \in \arg\max_{q_{1:T} \in D_{Q_{1:T}}} p(\bar{x}_{1:T}, q_{1:T})
\]

(7.13)
We know Viterbi-decoding/MPE for HMMs.

\[q_{1:T}^{*(1)} \in \arg\max_{q_{1:T} \in \mathcal{D}_{Q_{1:T}}} p(\bar{x}_{1:T}, q_{1:T}) \quad (7.13) \]

What if we want the second best. I.e.,

\[q_{1:T}^{*(2)} \in \arg\max_{q_{1:T} \in \mathcal{D}_{Q_{1:T}}, q_{1:T} \neq q_{1:T}^{*(1)}} p(\bar{x}_{1:T}, q_{1:T}) \quad (7.14) \]
We know Viterbi-decoding/MPE for HMMs.

\[
q^{*}_{1:T}^{(1)} \in \arg \max_{q_{1:T} \in D_{Q_{1:T}}} p(\bar{x}_{1:T}, q_{1:T}) \tag{7.13}
\]

What if we want the second best. I.e.,

\[
q^{*}_{1:T}^{(2)} \in \arg \max_{q_{1:T} \in D_{Q_{1:T}}, q_{1:T} \neq q^{*}_{1:T}^{(1)}} p(\bar{x}_{1:T}, q_{1:T}) \tag{7.14}
\]

and the third best

\[
q^{*}_{1:T}^{(3)} \in \arg \max_{q_{1:T} \in D_{Q_{1:T}}, q_{1:T} \notin \{q^{*}_{1:T}^{(1)}, q^{*}_{1:T}^{(2)}\}} p(\bar{x}_{1:T}, q_{1:T}) \tag{7.15}
\]
k-best

- We know Viterbi-decoding/MPE for HMMs.

$$q^{(1)}_{1:T} \in \arg\max_{q_{1:T} \in D_{Q_{1:T}}} p(\bar{x}_{1:T}, q_{1:T})$$ (7.13)

- What if we want the second best. I.e.,

$$q^{(2)}_{1:T} \in \arg\max_{q_{1:T} \in D_{Q_{1:T}}, q_{1:T} \neq q^{(1)}_{1:T}} p(\bar{x}_{1:T}, q_{1:T})$$ (7.14)

- and the third best

$$q^{(3)}_{1:T} \in \arg\max_{q_{1:T} \in D_{Q_{1:T}}, q_{1:T} \notin \{q^{(1)}_{1:T}, q^{(2)}_{1:T}\}} p(\bar{x}_{1:T}, q_{1:T})$$ (7.15)

- And the k^{th} best, $q^{(k)}_{1:T}$.
k-best and the trellis

```
What HMMs can do

Semiring

\[ k \]-best

Summary

Scratch

\[ b_{q_4}(x_1) \]

\[ b_{q_4}(x_2) \]

\[ b_{q_4}(x_3) \]

\[ b_{q_4}(x_4) \]

\[ p(q_4|q_4) \]

\[ p(q_4|q_4) \]

\[ p(q_4|q_4) \]

\[ p(q_4|q_4) \]

\[ b_{q_3}(x_1) \]

\[ b_{q_3}(x_2) \]

\[ b_{q_3}(x_3) \]

\[ b_{q_3}(x_4) \]

\[ p(q_4|q_3) \]

\[ p(q_4|q_3) \]

\[ p(q_4|q_3) \]

\[ p(q_4|q_3) \]

\[ b_{q_2}(x_1) \]

\[ b_{q_2}(x_2) \]

\[ b_{q_2}(x_3) \]

\[ b_{q_2}(x_4) \]

\[ p(q_3|q_3) \]

\[ p(q_3|q_3) \]

\[ p(q_3|q_3) \]

\[ p(q_3|q_3) \]

\[ b_{q_1}(x_1) \]

\[ b_{q_1}(x_2) \]

\[ b_{q_1}(x_3) \]

\[ b_{q_1}(x_4) \]

\[ p(q_2|q_2) \]

\[ p(q_2|q_2) \]

\[ p(q_2|q_2) \]

\[ p(q_2|q_2) \]

\[ p(q_1|q_1) \]

\[ p(q_1|q_1) \]

\[ p(q_1|q_1) \]

\[ p(q_1|q_1) \]

1

2

3

4
```
Let \mathbb{R}_k^+ be the set of (descending-order) sorted k-tuples of non-negative real numbers.
Sorted k-tuples

- Let \mathbb{R}^k_+ be the set of (descending-order) sorted k-tuples of non-negative real numbers.
- If $s \in \mathbb{R}^k_+$, then
 \[s = (s^1, s^2, \ldots, s^k) \]
 with $s^1 \geq s^2 \geq \cdots \geq s^k$.

\[(7.16) \]
Sorted k-tuples

Let \mathbb{R}_+^k be the set of (descending-order) sorted k-tuples of non-negative real numbers.

If $s \in \mathbb{R}_+^k$, then

$$s = (s^1, s^2, \ldots, s^k)$$

(7.16)

with $s^1 \geq s^2 \geq \cdots \geq s^k$.

Notation: denote s^i to indicate an element of a sorted k-tuple s.

\[\text{sh-tuple}\]
Let \mathbb{R}_+^k be the set of (descending-order) sorted k-tuples of non-negative real numbers.

If $s \in \mathbb{R}_+^k$, then

$$s = (s^1, s^2, \ldots, s^k)$$

with $s^1 \geq s^2 \geq \cdots \geq s^k$.

Notation: denote s^i to indicate an element of a sorted k-tuple s, use subscripts, such as s_1, s_2 to indicate particular k-tuples.
Let \(\overrightarrow{\mathbb{R}}^k_+ \) be the set of (descending-order) sorted \(k \)-tuples of non-negative real numbers.

If \(s \in \overrightarrow{\mathbb{R}}^k_+ \), then
\[
s = (s^1, s^2, \ldots, s^k)
\]
(7.16)
with \(s^1 \geq s^2 \geq \cdots \geq s^k \).

Notation: denote \(s^i \) to indicate an element of a sorted \(k \)-tuple \(s \), use subscripts, such as \(s_1, s_2 \) to indicate particular \(k \)-tuples.

All \(k \)-tuples will be assumed to be sorted in descending order.
Operations on Sorted k-tuples

- Given $s_1, s_2 \in \mathbb{R}^k_+$, define an operation to merging, re-sorting, and truncate so that result is in \mathbb{R}^k_+.
Operations on Sorted k-tuples

- Given $s_1, s_2 \in \mathbb{R}_+^k$, define an operation to merging, re-sorting, and truncate so that result is in \mathbb{R}_+^k.

That is we first merge:

$$\text{merge}(s_1, s_2) = (s_1^1, s_2^1, \ldots, s_1^k, s_2^1, s_2^2, \ldots, s_2^k)$$ \hspace{1cm} (7.17)
Operations on Sorted k-tuples

- Given $s_1, s_2 \in \mathbb{R}_+^k$, define an operation to merging, re-sorting, and truncate so that result is in \mathbb{R}_+^k.
- That is we first merge:

$$\text{merge}(s_1, s_2) = (s_1^1, s_1^2, \ldots, s_1^k, s_2^1, s_2^2, \ldots, s_2^k) \quad (7.17)$$

- Then sort:

$$\text{sort}(\text{merge}(s_1, s_2)) = (s_1^1, s_2^1, \ldots, s_2^{2k}) \quad (7.18)$$

where $s_1^1 \geq s_2^1 \geq \ldots \geq s_2^{2k}$.
Operations on Sorted k-tuples

- Given $s_1, s_2 \in \overrightarrow{\mathbb{R}}_k$, define an operation to merging, re-sorting, and truncate so that result is in $\overrightarrow{\mathbb{R}}_k$.

- That is we first merge:

$$\text{merge}(s_1, s_2) = (s_1^1, s_2^1, \ldots, s_1^k, s_2^1, s_2^2, \ldots, s_2^k) \quad (7.17)$$

- Then sort:

$$\text{sort}(\text{merge}(s_1, s_2)) = (s_1^1, s_2^2, \ldots, s_2^{2k}) \quad (7.18)$$

where $s_1^1 \geq s_2^2 \geq \ldots s_2^{2k}$.

- Then truncate, such that

$$k\text{-truncate}(\text{sort}(\text{merge}(s_1, s_2))) = (s_1^1, s_2^2, \ldots, s_2^k) = s \quad (7.19)$$

which just takes the first k items in the length $2k$ tuple.
Operations on Sorted k-tuples

- define the process of merging, sorting, and then truncating the ordered tuple to retain the largest k elements, as the operation \oplus.

\[\Theta : \mathbb{R}_+^k \times \mathbb{R}_+^k \rightarrow \mathbb{R}_+^k \]
Operations on Sorted k-tuples

- define the process of merging, sorting, and then truncating the ordered tuple to retain the largest k elements, as the operation \oplus.
- That is, the above sequence of operations defines the operation

$$s = (s^1, s^2, \ldots, s^k) = (s_1^1, s_1^2, \ldots, s_1^k) \oplus (s_2^1, s_2^2, \ldots, s_2^k)$$

$$= s_1 \oplus s_2 = k\text{-truncate}(\text{sort}(\text{merge}(s_1, s_2)))$$

$$= s_1 \oplus s_2 = k\text{-truncate}(\text{sort}(\text{merge}(s_1, s_2)))$$
Operations on Sorted k-tuples

- define the process of merging, sorting, and then truncating the ordered tuple to retain the largest k elements, as the operation \oplus.

That is, the above sequence of operations defines the operation

$$s = (s^1, s^2, \ldots, s^k) = (s^1_1, s^2_1, \ldots, s^k_1) \oplus (s^1_2, s^2_2, \ldots, s^k_2) \quad (7.20)$$

$$= s_1 \oplus s_2 = k\text{-truncate}(\text{sort}(\text{merge}(s_1, s_2))) \quad (7.21)$$

- Hence, if $k = 1$, then $s_1 \oplus s_2 = s$ with $s^1 = \max(s^1_1, s^1_2)$. So this is just the max operator.
Examples: $k = 1$

For example, when $k = 1$, we have that:

$$ (1) \oplus (3) = (3) $$

(7.22)
Examples: \(k = 1 \)

For example, when \(k = 1 \), we have that:

\[
(1) \oplus (3) = (3) \\
(2) \oplus (3) = (3)
\]
Examples: $k = 1$

For example, when $k = 1$, we have that:

(1) $\oplus (3) = (3)$ \hspace{1cm} (7.22)

(2) $\oplus (3) = (3)$ \hspace{1cm} (7.23)

(0) $\oplus (1) = (1)$ \hspace{1cm} (7.24)
Examples: $k = 1$

For example, when $k = 1$, we have that:

1. $(1) \oplus (3) = (3)$ \hspace{1cm} (7.22)
2. $(2) \oplus (3) = (3)$ \hspace{1cm} (7.23)
3. $(0) \oplus (1) = (1)$ \hspace{1cm} (7.24)
4. $(0) \oplus (0) = (0)$ \hspace{1cm} (7.25)
Examples: $k = 3$

As another example, when $k = 3$, we have

$$(3, 2, 1) \oplus (4, 2, 1) = (4, 3, 2)$$

(7.26)
Examples: \(k = 3 \)

As another example, when \(k = 3 \), we have

\[
(3, 2, 1) \oplus (4, 2, 1) = (4, 3, 2) \tag{7.26}
\]

\[
(3, 2, 1) \oplus (3, 2, 1) = (3, 3, 2) \tag{7.27}
\]
Examples: \(k = 3 \)

As another example, when \(k = 3 \), we have

\[
(3, 2, 1) \oplus (4, 2, 1) = (4, 3, 2) \tag{7.26}
\]
\[
(3, 2, 1) \oplus (3, 2, 1) = (3, 3, 2) \tag{7.27}
\]
\[
(0, 0, 0) \oplus (3, 2, 1) = (3, 2, 1) \tag{7.28}
\]
As another example, when $k = 3$, we have

\[
(3, 2, 1) \oplus (4, 2, 1) = (4, 3, 2) \quad (7.26)
\]

\[
(3, 2, 1) \oplus (3, 2, 1) = (3, 3, 2) \quad (7.27)
\]

\[
(0, 0, 0) \oplus (3, 2, 1) = (3, 2, 1) \quad (7.28)
\]

\[
(1, 0, 0) \oplus (3, 2, 1) = (3, 2, 1) \quad (7.29)
\]
Examples: $k = 3$

As another example, when $k = 3$, we have

\[(3, 2, 1) \oplus (4, 2, 1) = (4, 3, 2)\] \hspace{1cm} (7.26)

\[(3, 2, 1) \oplus (3, 2, 1) = (3, 3, 2)\] \hspace{1cm} (7.27)

\[(0, 0, 0) \oplus (3, 2, 1) = (3, 2, 1)\] \hspace{1cm} (7.28)

\[(1, 0, 0) \oplus (3, 2, 1) = (3, 2, 1)\] \hspace{1cm} (7.29)

\[(10, 9, 0) \oplus (3, 2, 1) = (10, 9, 3)\] \hspace{1cm} (7.30)
Examples: $k = 3$

As another example, when $k = 3$, we have

\[
(3, 2, 1) \oplus (4, 2, 1) = (4, 3, 2) \quad (7.26)
\]

\[
(3, 2, 1) \oplus (3, 2, 1) = (3, 3, 2) \quad (7.27)
\]

\[
(0, 0, 0) \oplus (3, 2, 1) = (3, 2, 1) \quad (7.28)
\]

\[
(1, 0, 0) \oplus (3, 2, 1) = (3, 2, 1) \quad (7.29)
\]

\[
(10, 9, 0) \oplus (3, 2, 1) = (10, 9, 3) \quad (7.30)
\]

\[
(10, 0, 0) \oplus (3, 0, 0) = (10, 3, 0) \quad (7.31)
\]
Examples: $k = 3$

As another example, when $k = 3$, we have

\[
(3, 2, 1) \oplus (4, 2, 1) = (4, 3, 2) \quad (7.26)
\]
\[
(3, 2, 1) \oplus (3, 2, 1) = (3, 3, 2) \quad (7.27)
\]
\[
(0, 0, 0) \oplus (3, 2, 1) = (3, 2, 1) \quad (7.28)
\]
\[
(1, 0, 0) \oplus (3, 2, 1) = (3, 2, 1) \quad (7.29)
\]
\[
(10, 9, 0) \oplus (3, 2, 1) = (10, 9, 3) \quad (7.30)
\]
\[
(10, 0, 0) \oplus (3, 0, 0) = (10, 3, 0) \quad (7.31)
\]
\[
(0, 0, 0) \oplus (1, 0, 0) = (1, 0, 0) \quad (7.32)
\]
Scalar conversion

- operation of converting a non-negative scalar to a sorted k-tuple

For $r \in \mathbb{R}^+$, which is the set of non-negative reals, we have

$$
\rightarrow \mathbb{R}^k_+ (r) = (r, 0, 0, \ldots, 0)
$$

(7.33)

where there are $k-1$ zeros following the r.

Thus, any scalar value is considered a k-tuple with potentially only one non-zero entry.

E.g., the value 3 is represented as $(3, 0, 0)$.

Thus, we can repeatedly "insert" elements r_1, r_2, \ldots, r_ℓ (not necessarily sorted) into a k tuple by forming:

$$
\rightarrow \mathbb{R}^k_+ (r_1) \oplus \rightarrow \mathbb{R}^k_+ (r_2) \oplus \cdots \oplus \rightarrow \mathbb{R}^k_+ (r_\ell) = (r_{\sigma_1}, r_{\sigma_2}, \ldots, r_{\sigma_k})
$$

(7.34)

where $r_{\sigma_1} \geq r_{\sigma_2} \geq \cdots \geq r_{\sigma_k}$ and r_{σ_k} is not strictly less than any of the elements that may have been truncated from r_1, r_2, \ldots, r_ℓ.
Scalar conversion

- operation of converting a non-negative scalar to a sorted k-tuple
- For $r \in R_+$, which is the set of non-negative reals, we have

$$\overrightarrow{\mathbb{R}}_+(r) = (r, 0, 0, \ldots, 0)$$

(7.33)

where there are $k - 1$ zeros following the r.
Scalar conversion

- operation of converting a non-negative scalar to a sorted \(k \)-tuple
- For \(r \in R_+ \), which is the set of non-negative reals, we have

\[
\overrightarrow{R}^k_+(r) = (r, 0, 0, \ldots, 0)
\]

(7.33)

where there are \(k - 1 \) zeros following the \(r \).

- Thus, any scalar value is considered a \(k \)-tuple with potentially only one non-zero entry.
Scalar conversion

- operation of converting a non-negative scalar to a sorted k-tuple
- For $r \in R_+$, which is the set of non-negative reals, we have
 \[
 \overrightarrow{R}_+^k(r) = (r, 0, 0, \ldots, 0)
 \]
 (7.33)
 where there are $k - 1$ zeros following the r.
- Thus, any scalar value is considered a k-tuple with potentially only one non-zero entry.
- E.g., the value 3 is represented as $(3, 0, 0)$.
Scalar conversion

- operation of converting a non-negative scalar to a sorted k-tuple

- For $r \in R_+$, which is the set of non-negative reals, we have

\[
\overrightarrow{R}_+^k(r) = (r, 0, 0, \ldots, 0)
\]

(7.33)

where there are $k - 1$ zeros following the r.

- Thus, any scalar value is considered a k-tuple with potentially only one non-zero entry.

- E.g., the value 3 is represented as $(3, 0, 0)$.

- Thus, we can repeatedly “insert” elements r_1, r_2, \ldots, r_ℓ (not necessarily sorted) into a k tuple by forming:

\[
\overrightarrow{R}_+^k(r_1) \oplus \overrightarrow{R}_+^k(r_2) \oplus \cdots \oplus \overrightarrow{R}_+^k(r_\ell) = (r_{\sigma_1}, r_{\sigma_2}, \ldots, r_{\sigma_k})
\]

(7.34)

where $r_{\sigma_1} \geq r_{\sigma_2} \geq \cdots \geq r_{\sigma_k}$ and r_{σ_k} is not strictly less than any of the elements that may have been truncated from r_1, r_2, \ldots, r_ℓ.
Note that this operation \oplus has a number of properties.
Properties

- Note that this operation \oplus has a number of properties.
- For any $s_1, s_2, s_3 \in \mathbb{R}_+^k$, we have that

\[
s_1 \oplus s_2 \in \mathbb{R}_+^k \quad \text{(closure)} \quad (7.35)
\]
\[
s_1 \oplus s_2 = s_2 \oplus s_1 \quad \text{(commutativity)} \quad (7.36)
\]
\[
(s_1 \oplus s_2) \oplus s_3 = s_1 \oplus (s_2 \oplus s_3) \quad \text{(associativity)} \quad (7.37)
\]
Properties

- Note that this operation \oplus has a number of properties.
- For any $s_1, s_2, s_3 \in \mathbb{R}_+^k$, we have that

 $$s_1 \oplus s_2 \in \mathbb{R}_+^k$$ \hspace{1cm} \text{(closure)} \hspace{1cm} (7.35)

 $$s_1 \oplus s_2 = s_2 \oplus s_1$$ \hspace{1cm} \text{(commutativity)} \hspace{1cm} (7.36)

 $$(s_1 \oplus s_2) \oplus s_3 = s_1 \oplus (s_2 \oplus s_3)$$ \hspace{1cm} \text{(associativity)} \hspace{1cm} (7.37)

- Also, there exists an additive identity, call it \emptyset, such that

 $$s_1 \oplus \emptyset = s_1$$ \hspace{1cm} (7.38)

 with $\emptyset = (0, 0, \ldots, 0)$.
Properties

- Note that this operation \oplus has a number of properties.
- For any $s_1, s_2, s_3 \in \mathbb{R}_+^k$, we have that

 \[s_1 \oplus s_2 \in \mathbb{R}_+^k \]
 \[s_1 \oplus s_2 = s_2 \oplus s_1 \]
 \[(s_1 \oplus s_2) \oplus s_3 = s_1 \oplus (s_2 \oplus s_3) \]

(closure) \hspace{1cm} (7.35)

(commutativity) \hspace{1cm} (7.36)

(associativity) \hspace{1cm} (7.37)

- Also, there exists an additive identity, call it \emptyset, such that

 \[s_1 + \emptyset = s_1 \]

(7.38)

with $\emptyset = (0, 0, \ldots, 0)$.

- Therefore, (\mathbb{R}_+^k, \oplus) itself forms a *commutative semi-group*. It is a semi-group rather than a group since we are not requiring an additive inverse.
Repeated operations

- Given a set of elements $s_1, s_2, \ldots, s_\ell \in \mathbb{R}_+^k$, we can repeatedly compute \oplus as

\[
\bigoplus_{i=1}^\ell s_i = s = (s^1, s^2, \ldots, s^k)
\] \hfill (7.39)
Repeated operations

Given a set of elements $s_1, s_2, \ldots, s_\ell \in \mathbb{R}_+^k$, we can repeatedly compute \oplus as

$$\bigoplus_{i=1}^\ell s_i = s = (s^1, s^2, \ldots, s^k) \quad (7.39)$$

Then, (s^1, s^2, \ldots, s^k) is the k-tuple containing the k largest elements in the union of all of the elements in s_1, s_2, \ldots, s_ℓ.
Repeated operations

- Given a set of elements $s_1, s_2, \ldots, s_\ell \in \overrightarrow{R}_k^+$, we can repeatedly compute \oplus as

$$\bigoplus_{i=1}^{\ell} s_i = s = (s^1, s^2, \ldots, s^k) \quad (7.39)$$

- Then, (s^1, s^2, \ldots, s^k) is the k-tuple containing the k largest elements in the union of all of the elements in s_1, s_2, \ldots, s_ℓ.

- This operation is well defined due to the above closure and associativity properties.
Repeated operations

- Given a set of elements $s_1, s_2, \ldots, s_\ell \in \mathbb{R}^+_k$, we can repeatedly compute \oplus as

$$\bigoplus_{i=1}^\ell s_i = s = (s^1, s^2, \ldots, s^k) \quad (7.39)$$

- Then, (s^1, s^2, \ldots, s^k) is the k-tuple containing the k largest elements in the union of all of the elements in s_1, s_2, \ldots, s_ℓ.

- This operation is well defined due to the above closure and associativity properties.

- Operation remains in \mathbb{R}^+_k, and the order doesn’t matter.
Scalar multiplication

Given $r \in \mathbb{R}_+$, and $s \in \mathbb{R}^k_+$, define the scalar left-multiplication as an operation $\mathbb{R}_+ \times \mathbb{R}^k_+ \rightarrow \mathbb{R}^k_+$ called as follows:

$$r \cdot s = (rs^1, rs^2, \ldots, rs^k)$$

(7.40)
Scalar multiplication

Given $r \in \mathbb{R}_+$, and $s \in \mathbb{R}_+^k$, define the scalar left-multiplication as an operation $\mathbb{R}_+ \times \mathbb{R}_+^k \rightarrow \mathbb{R}_+^k$ called as follows:

$$r \cdot s = (rs^1, rs^2, \ldots, rs^k)$$

I.e., we scalar multiply each element in s by r, and since $r \geq 0$, the order does not change.
Scalar multiplication

- Given $r \in \mathbb{R}_+$, and $s \in \overrightarrow{\mathbb{R}}^k_+$, define the scalar left-multiplication as an operation $\mathbb{R}_+ \times \overrightarrow{\mathbb{R}}^k_+ \rightarrow \overrightarrow{\mathbb{R}}^k_+$ called as follows:
 \[r \cdot s = (rs^1, rs^2, \ldots, rs^k) \]
 \[(7.40) \]

- I.e., we scalar multiply each element in s by r, and since $r \geq 0$, the order does not change.

- When clear from the context, we drop the \cdot notation as is done in standard scalar-vector multiplication, so that $r \cdot s = rs$.
Vector (tuple) addition

For $s_1, s_2 \in \mathbb{R}^k_+$, we also define standard vector addition as

$$s = (s^1, s^2, \ldots, s^k) = s_1 + s_2$$

where $s^i = s^i_1 + s^i_2$.

Vector (tuple) addition

- For $s_1, s_2 \in \mathbb{R}^k_+$, we also define standard vector addition as $s = (s^1, s^2, \ldots, s^k) = s_1 + s_2$ where $s^i = s_1^i + s_2^i$.

- Since input operands are both sorted, so is result. I.e., since $s_1^1 \geq s_1^2$ and $s_2^1 \geq s_2^2$ we have $s^1 = s_1^1 + s_2^1 \geq s_1^2 + s_2^2 = s^2$.
Vector (tuple) addition

- For \(s_1, s_2 \in \mathbb{R}_+^k \), we also define standard vector addition as
 \[s = (s^1, s^2, \ldots, s^k) = s_1 + s_2 \]
 where \(s^i = s_1^i + s_2^i \).

- Since input operands are both sorted, so is result. I.e., since
 \(s_1^1 \geq s_2^1 \) and \(s_1^2 \geq s_2^2 \) we have
 \[s^1 = s_1^1 + s_1^2 \geq s_2^1 + s_2^2 = s^2. \]

- Note that \(s_1 + s_2 \) using the “+” operator is standard vector
 addition, while \(s_1 \oplus s_2 \) is the merge, sort, and truncate operation we
 mentioned above.
Properties of scalar mult

Note that for all \(r_1, r_2 \in \mathbb{R}_+ \), and \(s_1, s_2 \in \mathbb{R}_+^k \), we have that

\[
\begin{align*}
 r_1 (s_1 \oplus s_2) &= r_1 s_1 \oplus r_1 s_2 & \text{distributive property} & \quad (7.41) \\
 (r_1 + r_2) s_1 &= (r_1 s_1) + (r_2 s_1) & \text{distributive property} & \quad (7.42) \\
 (r_1 r_2) s_1 &= r_1 (r_2 s_1) & \text{associativity} & \quad (7.43)
\end{align*}
\]
Reminder - Viterbi Path

The following slide is from lecture 5.
MPE/Viterbi path - summary

Forward Equations

\[\alpha^m_q(1) = p(\bar{x}_1|Q_1 = q) \] \hspace{1cm} (7.21)

\[\alpha^m_q(t) = p(\bar{x}_t|Q_t = q) \max_r p(Q_t = q|Q_{t-1} = r)\alpha^m_r(t-1) \] \hspace{1cm} (7.22)

And the forward equation for storing the back indices:

\[\check{\alpha}^m_q(t) \in \arg\max_r p(Q_t = q|Q_{t-1} = r)\alpha^m_r(t-1) \] \hspace{1cm} (7.23)

Backward algorithm, to compute the Viterbi path

1. Compute \(q^*_T \in \arg\max_q \alpha^m_q(T') \)
2. for \(t = T \ldots 2 \) do
3. \[\text{Set } q^*_{t-1} \leftarrow \check{\alpha}^m_{q^*_t}(t) \]
k-best paths

- Viterbi path is:

$$q^*_{1:T} \in \arg\max_{q_{1:T}} p(\bar{x}_{1:T}, q_{1:T})$$

(7.44)
k-best paths

- Viterbi path is:

\[
q_{1:T}^* \in \arg\max_{q_{1:T}} p(\tilde{x}_{1:T}, q_{1:T})
\] \hspace{1cm} (7.44)

- Our goal is to find a set of distinct assignments

\[
q_{1:T}(1), q_{1:T}(2), \ldots, q_{1:T}(k)
\] \hspace{1cm} (7.45)

with

\[
p(\tilde{x}_{1:T}, q_{1:T}(1)) \geq p(\tilde{x}_{1:T}, q_{1:T}(2)) \geq \cdots \geq p(\tilde{x}_{1:T}, q_{1:T}(k))
\] \hspace{1cm} (7.46)

and any other assignments not mentioned have score no higher than

\[p(\tilde{x}_{1:T}, q_{1:T}(k)).\]
Each of $p(\bar{x}_{1:T}, q_{1:T}^*(i))$ is scalar value in \mathbb{R}_+, so therefore, we have that

$$\bigoplus_{q_{1:T} \in D_{Q_{1:T}}} \mathbb{R}_+^k (p(\bar{x}_{1:T}, q_{1:T}))$$

$$= (p(\bar{x}_{1:T}, q_{1:T}^*(1)), p(\bar{x}_{1:T}, q_{1:T}^*(2)), \ldots, p(\bar{x}_{1:T}, q_{1:T}^*(k))) \quad (7.47)$$
k-best

- Each of \(p(\bar{x}_{1:T}, q_{1:T}^*(i)) \) is scalar value in \(\mathbb{R}_+ \), so therefore, we have that

\[
\bigoplus_{q_{1:T} \in D_{Q_{1:T}}} \mathbb{R}^k_+ (p(\bar{x}_{1:T}, q_{1:T}))
\]

\[
= (p(\bar{x}_{1:T}, q_{1:T}^*(1)), p(\bar{x}_{1:T}, q_{1:T}^*(2)), \ldots, p(\bar{x}_{1:T}, q_{1:T}^*(k))) \quad (7.47)
\]

- For simplicity, we will assume that a scalar \(r \in \mathbb{R}_+ \) will automatically graduate from a scalar into a \(k \)-tuple via the operator \(\oplus \), so that \(r_1 \oplus r_2 \equiv \mathbb{R}^k_+(r_1) \oplus \mathbb{R}^k_+(r_2) \).
Each of $p(\bar{x}_{1:T}, q_{1:T}^*(i))$ is scalar value in \mathbb{R}_+, so therefore, we have that

$$\bigoplus_{q_{1:T} \in D_{q_{1:T}}} \mathbb{R}_+^k (p(\bar{x}_{1:T}, q_{1:T}))$$

$$= (p(\bar{x}_{1:T}, q_{1:T}(1)), p(\bar{x}_{1:T}, q_{1:T}(2)), \ldots, p(\bar{x}_{1:T}, q_{1:T}(k))) \quad (7.47)$$

For simplicity, we will assume that a scalar $r \in \mathbb{R}_+$ will automatically graduate from a scalar into a k-tuple via the operator \oplus, so that $r_1 \oplus r_2 \equiv \mathbb{R}_+^k(r_1) \oplus \mathbb{R}_+^k(r_2)$.

If $k = 1$, then we have Viterbi (MPE) path value. That is, we have given an exponential calculation that expresses the Viterbi path value.
\[k \text{-best} \]

- Each of \(p(\bar{x}_{1:T}, q^*_{1:T}(i)) \) is scalar value in \(\mathbb{R}_+ \), so therefore, we have that

\[
\bigoplus_{q_1:T \in D_{Q_{1:T}}} \mathbb{R}_+^k \langle p(\bar{x}_{1:T}, q_{1:T}) \rangle
\]

\[= (p(\bar{x}_{1:T}, q^*_{1:T}(1)), p(\bar{x}_{1:T}, q^*_{1:T}(2)), \ldots, p(\bar{x}_{1:T}, q^*_{1:T}(k))) \quad (7.47) \]

- For simplicity, we will assume that a scalar \(r \in \mathbb{R}_+ \) will automatically graduate from a scalar into a \(k \)-tuple via the operator \(\oplus \), so that \(r_1 \oplus r_2 \equiv \mathbb{R}_+^k(r_1) \oplus \mathbb{R}_+^k(r_2) \).

- If \(k = 1 \), then we have Viterbi (MPE) path value. That is, we have given an exponential calculation that expresses the Viterbi path value.

- If \(k > 1 \) we have an exponential computation that expresses a vector consisting of the \(k \)-best path values.
The k-best

- Each of $p(\bar{x}_{1:T}, q^*_1:T(i))$ is scalar value in \mathbb{R}_+, so therefore, we have that

$$\bigoplus_{q_1:T \in Dq_1:T} \mathbb{R}_+^k (p(\bar{x}_{1:T}, q_1:T))$$

$$= (p(\bar{x}_{1:T}, q^*_1:T(1)), p(\bar{x}_{1:T}, q^*_1:T(2)), \ldots, p(\bar{x}_{1:T}, q^*_1:T(k))) \quad (7.47)$$

- For simplicity, we will assume that a scalar $r \in \mathbb{R}_+$ will automatically graduate from a scalar into a k-tuple via the operator \oplus, so that $r_1 \oplus r_2 \equiv \mathbb{R}_+^k (r_1) \oplus \mathbb{R}_+^k (r_2)$.

- If $k = 1$, then we have Viterbi (MPE) path value. That is, we have given an exponential calculation that expresses the Viterbi path value.

- If $k > 1$ we have an exponential computation that expresses a vector consisting of the k-best path values.

- In either case there is much optimization we can do thanks to the aforementioned properties.
Optimization via dist. property

Because of the distributed property above, we have that

$$\bigoplus_{q_1:T \in D_{Q:1:T}} p(\bar{x}_{1:T}, q_{1:T}) \quad (7.48)$$

$$= \bigoplus_{q_1:T \in D_{Q:1:T}} \prod_t p(x_t | q_t) p(q_t | q_{t-1}) \quad (7.49)$$

$$= \bigoplus_{q_T} p(x_T | q_T) p(q_T | q_{T-1}) \cdots \left(\bigoplus_{q_2} p(x_2 | q_2) p(q_3 | q_2) \left(\bigoplus_{q_1} p(x_1 | q_1) p(q_2 | q_1) \right) \right) \quad (7.50)$$

$$= \bigoplus_{q_T} p(q_T | q_{T-1}) \cdots \left(p(x_3 | q_3) \bigoplus_{q_2} p(q_3 | q_2) \left(p(x_2 | q_2) \bigoplus_{q_1} p(x_1 | q_1) p(q_2 | q_1) \right) \right) \quad (7.51)$$
of k-best forward equations recursion

$$\alpha_1^{(k)}(q) = \overrightarrow{\mathbb{R}}_+^k (p(\bar{x}_1|Q_t = q))$$ \hfill (7.52)

and for $t > 1$:

$$\alpha_t^{(k)}(q) = p(\bar{x}_t|Q_t = q) \bigoplus_{r} p(Q_t = q|Q_{t-1} = r) \alpha_{t-1}^{(k)}(r)$$ \hfill (7.53)

Note:

- $\alpha_t^{(k)}(q) \in \overrightarrow{\mathbb{R}}_+^k$ is a k-tuple for all q, t.

of k-best forward equations recursion

$\alpha^{(k)}_1(q) = \overrightarrow{R}_k^+ \left(p(\bar{x}_1|Q_t = q) \right)$

and for $t > 1$:

$\alpha^{(k)}_t(q) = p(\bar{x}_t|Q_t = q) \bigoplus_r p(Q_t = q|Q_{t-1} = r) \alpha^{(k)}_{t-1}(r)$ \hspace{1cm} (7.53)

Note:

- $\alpha^{(k)}_t(q) \in \overrightarrow{R}_k^+$ is a k-tuple for all q, t.
- Hence, for each (t, q), need a tuple of size k to store the k values, unlike standard ($k = 1$) Viterbi.
Max marginal interpretation

- In Viterbi case, we have max marginal interpretation:

\[
\alpha_t^m(q_t) = \max_{q_{1:t-1}} p(q_{1:t-1}, q_t, \bar{x}_{1:t})
\]

\[(7.54) \]
In Viterbi case, we have max marginal interpretation:

\[
\alpha^m_t(q_t) = \max_{q_{1:t-1}} p(q_{1:t-1}, q_t, \bar{x}_{1:t})
\]

(7.54)

Similar thing can be done here.
Max marginal interpretation

- In Viterbi case, we have max marginal interpretation:

\[\alpha_t^m(q_t) = \max_{q_1:t-1} p(q_1:t-1, q_t, \bar{x}_{1:t}) \]

(7.54)

- Similar thing can be done here.

- Suppose:

\[\alpha_t^{(k)}(q_t) = (p(\bar{x}_{1:t}, q_{1:t-1}(1), q_t), p(\bar{x}_{1:t}, q_{1:t-1}(2), q_t), \ldots, p(\bar{x}_{1:t}, q_{1:t-1}(k), q_t)) \]
Max marginal interpretation

- In Viterbi case, we have max marginal interpretation:

\[\alpha^m_t(q_t) = \max_{q_{1:t-1}} p(q_{1:t-1}, q_t, \bar{x}_{1:t}) \quad (7.54) \]

- Similar thing can be done here.

- Suppose:

\[\alpha^{(k)}_t(q_t) = (p(\bar{x}_{1:t}, q_{1:t-1}(1), q_t), p(\bar{x}_{1:t}, q_{1:t-1}(2), q_t), \ldots, p(\bar{x}_{1:t}, q_{1:t-1}(k), q_t)) \]

- then

\[p(\bar{x}_{1:t}, q_{1:t-1}(1), q_t) = \max_{q_{1:t-1}} p(q_{1:t-1}, q_t, \bar{x}_{1:t}) \quad (7.55) \]
Max marginal interpretation

- We also have that

\[
p(\bar{x}_{1:t}, q_{1:t-1}(1), q_t) \geq p(\bar{x}_{1:t}, q_{1:t-1}(2), q_t) \geq \cdots \geq p(\bar{x}_{1:t}, q_{1:t-1}(k), q_t)
\]
(7.56)
Max marginal interpretation

- We also have that

\[p(\bar{x}_{1:t}, q_{1:t-1}(1), q_t) \geq p(\bar{x}_{1:t}, q_{1:t-1}(2), q_t) \geq \cdots \geq p(\bar{x}_{1:t}, q_{1:t-1}(k), q_t) \]

(7.56)

- Also, \(p(\bar{x}_{1:t}, q_{1:t-1}(k), q_t) \geq p(\bar{x}_{1:t}, q'_{1:t-1}, q_t) \) where \(q'_{1:t-1} \) is any other sequence of states up to time \(t - 1 \) that have not been included in the above.
Max marginal interpretation

- We also have that

\[p(\bar{x}_{1:t}, q_{1:t-1}(1), q_t) \geq p(\bar{x}_{1:t}, q_{1:t-1}(2), q_t) \geq \cdots \geq p(\bar{x}_{1:t}, q_{1:t-1}(k), q_t) \]

(7.56)

- Also, \(p(\bar{x}_{1:t}, q_{1:t-1}(k), q_t) \geq p(\bar{x}_{1:t}, q'_{1:t-1}, q_t) \) where \(q'_{1:t-1} \) is any other sequence of states up to time \(t-1 \) that have not been included in the above.

- \(\alpha_t^{(k)}(q) \) gives us the probabilities of the top \(k \) sequence of states leading up to and ending at state \(q \) at time \(t \)
Max marginal interpretation

- We also have that

\[p(\bar{x}_{1:t}, q_{1:t-1}(1), q_t) \geq p(\bar{x}_{1:t}, q_{1:t-1}(2), q_t) \geq \cdots \geq p(\bar{x}_{1:t}, q_{1:t-1}(k), q_t) \] (7.56)

- Also, \(p(\bar{x}_{1:t}, q_{1:t-1}(k), q_t) \geq p(\bar{x}_{1:t}, q_{1:t-1}', q_t) \) where \(q_{1:t-1}' \) is any other sequence of states up to time \(t - 1 \) that have not been included in the above.

- \(\alpha_t^{(k)}(q) \) gives us the probabilities of the top \(k \) sequence of states leading up to and ending at state \(q \) at time \(t \).

- This generalizes the (max margin) fact that \(\alpha_t^m(q) \) gives us the top scoring sequence of states leading up to and ending at state \(q \) at time \(t \).
k-best scores

- if we then compute

\[\bigoplus_{q_T} \alpha_T^{(k)}(q_T) = (p(\bar{x}_{1:T}, q_{1:T}^*(1)), p(\bar{x}_{1:T}, q_{1:T}^*(2)), \ldots, p(\bar{x}_{1:T}, q_{1:T}^*(k))) \]

(7.57)

we’ll get the desired values, i.e., the scores of the k-best paths through the HMM.
k-best scores

- if we then compute

$$\bigoplus_{q_T} \alpha^{(k)}_T (q_T) = (p(\bar{x}_{1:T}, q^{*}_{1:T}(1)), p(\bar{x}_{1:T}, q^{*}_{1:T}(2)), \ldots, p(\bar{x}_{1:T}, q^{*}_{1:T}(k)))$$

(7.57)

we’ll get the desired values, i.e., the scores of the k-best paths through the HMM.

- But how do we get the k-best paths?
max returns the max and argmax returns the argument that achieves the max.
arg k max

- \max returns the max and $\arg\max$ returns the argument that achieves the max.
- \oplus returns the max k elements.
arg \(k\) max

- \(\text{max}\) returns the max and \(\text{argmax}\) returns the argument that achieves the max.
- \(\oplus\) returns the max \(k\) elements.
- we can generalize \(\oplus\) as well in the same way. For
arg k max

- max returns the max and argmax returns the argument that achieves the max.
- \oplus returns the max k elements.
- we can generalize \oplus as well in the same way. For
- We call this arg\oplus, pronounced “arg-k-max”.

Note that arg\oplus has an implicit (but not expressed) dependence on k. If we have $s_1, s_2 \in \rightarrow R^k_+$, and $k = 1$, then arg$\oplus(s_1, s_2)$ (7.58) should produce the index, 1 or 2, depending on which of s_1 and s_2 contain the max.
arg k max

- max returns the max and argmax returns the argument that achieves the max.
- \oplus returns the max k elements.
- we can generalize \oplus as well in the same way. For
- We call this arg\oplus, pronounced “arg-k-max”.
- Note that arg\oplus has an implicit (but not expressed) dependence on k.
max returns the max and \(\text{argmax} \) returns the argument that achieves the max.

\(\oplus \) returns the max \(k \) elements.

we can generalize \(\oplus \) as well in the same way. For

We call this \(\text{arg}\oplus \), pronounced “arg-k-max”.

Note that \(\text{arg}\oplus \) has an implicit (but not expressed) dependence on \(k \).

If we have \(s_1, s_2 \in \mathbb{R}^k_+ \), and \(k = 1 \), then

\[
\text{arg}\oplus(s_1, s_2) \quad (7.58)
\]

should produce the index, 1 or 2, depending on which of \(s_1 \) and \(s_2 \) contain the max.
With $k > 1$, $\arg\bigoplus$ should produce a set of k indices indicating where the k-largest values are.
With \(k \geq 1 \), \(\text{arg} \oplus \) should produce a set of \(k \) indices indicating where the \(k \)-largest values are.

With \(k > 1 \) the values could come from either \(s_1 \) or \(s_2 \), so the indices themselves have to be a 2-tuple, stating...
With $k > 1$, $\text{arg}\max$ should produce a set of k indices indicating where the k-largest values are.

With $k > 1$ the values could come from either s_1 or s_2, so the indices themselves have to be a 2-tuple, stating

1. which k-tuple (either s_1 or s_2) the entry lies in and
With $k > 1$, $\text{arg}\oplus$ should produce a set of k indices indicating where the k-largest values are.

With $k > 1$ the values could come from either s_1 or s_2, so the indices themselves have to be a 2-tuple, stating:

1. which k-tuple (either s_1 or s_2) the entry lies in and
2. where in that selected k-tuple the entry is.
arg k max

- With $k > 1$, arg\oplus should produce a set of k indices indicating where the k-largest values are.
- With $k > 1$ the values could come from either s_1 or s_2, so the indices themselves have to be a 2-tuple, stating:
 1. which k-tuple (either s_1 or s_2) the entry lies in and
 2. where in that selected k-tuple the entry is.
- In other words, arg\oplus returns a list of pairs of integers, where each pair is a tuple-identifier i and a position $1 \leq j \leq k$ within that tuple.
With $k > 1$, $\arg \max$ should produce a set of k indices indicating where the k-largest values are.

With $k > 1$ the values could come from either s_1 or s_2, so the indices themselves have to be a 2-tuple, stating

1. which k-tuple (either s_1 or s_2) the entry lies in and
2. where in that selected k-tuple the entry is.

In other words, $\arg \max$ returns a list of pairs of integers, where each pair is a tuple-identifier i and a position $1 \leq j \leq k$ within that tuple.

List of pairs ordered: the first pair indexes the tuple and tuple entry of the largest element in the ordered lists of numbers; the second pair indexes the tuple and tuple entry of the second largest element in the ordered lists of numbers; and so on.
For example, suppose $k = 3$, then

$$\text{arg}^\oplus((3.0, 2.0, 1.0), (6.0, 5.0, 2.0)) = \{((2, 1), (2, 2), (1, 1))\} \quad (7.59)$$
arg \ k \ max

For example, suppose \(k = 3 \), then

\[
\text{arg} \oplus ((3.0, 2.0, 1.0), (6.0, 5.0, 2.0)) = \{((2, 1), (2, 2), (1, 1))\} \quad (7.59)
\]

Another example with \(k = 4 \) would be:

\[
\text{arg} \oplus ((4.0, 3.0, 2.1, 0.5), (7.0, 6.0, 2.0, 1.0), (5.0, 2.0, 1.0, 1.0))
\]

\[
= \{((2, 1), (2, 2), (3, 1), (1, 1))\} \quad (7.61)
\]
Another example, suppose $k = 3$, then

$$\arg \oplus ((3.0, 2.0, 1.0), (6.0, 5.0, 3.0))$$

$$= \{ ((2, 1), (2, 2), (1, 1)), ((2, 1), (2, 2), (2, 3)) \}$$
Another example, suppose $k = 3$, then

$$\text{arg}^\oplus((3.0, 2.0, 1.0), (6.0, 5.0, 3.0))$$

$$= \{(2, 1), (2, 2), (1, 1)\}, \{(2, 1), (2, 2), (2, 3)\}$$

Hence, we can have more than list of pairs that achieves the same $\max k$ values.
Another example, suppose $k = 3$, then

$$\text{arg}^{\oplus}((3.0, 2.0, 1.0), (6.0, 5.0, 3.0)) = \{((2, 1), (2, 2), (1, 1)), ((2, 1), (2, 2), (2, 3))\}$$

Hence, we can have more than list of pairs that achieves the same max k values.

Thus, arg^{\oplus} should be interpreted as a set of lists, each list in the set is a list of pairs.
Consider now the following recursion, where at each step we are computing a set of k pairs of integers.

\[
\tilde{\alpha}_t^{(k)}(q) \in \arg\max_r p(Q_t = q | Q_{t-1} = r) \alpha_{t-1}^{(k)}(r)
\]

(7.64)
Consider now the following recursion, where at each step we are computing a set of k pairs of integers.

$$
\hat{\alpha}_t^{(k)}(q) \in \arg\oplus_r p(Q_t = q|Q_{t-1} = r)\alpha_{t-1}^{(k)}(r)
$$

(7.64)

Where is the use of the observation scores $p(\bar{x}_t|q_t)$? Discuss.
Consider now the following recursion, where at each step we are computing a set of k pairs of integers.

$$\tilde{\alpha}_{t}(q) \in \operatorname{arg\,}\bigoplus_{r} p(Q_{t} = q | Q_{t-1} = r) \alpha^{(k)}_{t-1}(r)$$

(7.64)

Where is the use of the observation scores $p(\bar{x}_{t} | q_{t})$? Discuss.

Also, note the use of “\in”.
Consider now the following recursion, where at each step we are computing a set of k pairs of integers.

$$
\tilde{\alpha}_t^{(k)}(q) \in \text{arg}\oplus_{r} p(Q_t = q | Q_{t-1} = r) \alpha_{t-1}^{(k)}(r)
$$

(7.64)

Where is the use of the observation scores $p(\bar{x}_t | q_t)$? Discuss.

Also, note the use of “\in”.

Collectively, $\{\tilde{\alpha}_t^{(k)}(q)\} \quad t\in\{1,2,...,T\}, q\in\{1,2,...,N\}$ is a $|D_Q| \times T$ matrix of k-tuples of pairs (so $2kTN$ entries in total).
Consider now the following recursion, where at each step we are computing a set of k pairs of integers.

$$\tilde{\alpha}_t^{(k)}(q) \in \arg\max_r p(Q_t = q | Q_{t-1} = r) \alpha_{t-1}^{(k)}(r)$$ \hspace{1cm} (7.64)

Where is the use of the observation scores $p(\bar{x}_t | q_t)$? Discuss.

Also, note the use of "∈".

Collectively, \(\left\{ \tilde{\alpha}_t^{(k)}(q) \right\}_{t\in\{1,2,\ldots,T\}, q\in\{1,2,\ldots,N\}} \) is a $|D_Q| \times T$ matrix of k-tuples of pairs (so $2kTN$ entries in total).

The set of pairs at $\tilde{\alpha}_t^{(k)}(q)$ identify the location of the k largest items in the collective set of k-tuples in the previous time step that: 1) lead to entry (q, t) in the matrix, and 2) have accounted for the transition matrix $p(q|r)$ for r ranging over the first element in every pair $\tilde{\alpha}_t^{(k)}(q)$.
Backtracking recursion

- We can denote this list of pairs via:

$$\hat{\alpha}^{(k)}_t(q) = \left((\tilde{q}^1, \tilde{k}^1), (\tilde{q}^2, \tilde{k}^2), \ldots, (\tilde{q}^k, \tilde{k}^k) \right)$$

(7.65)

where $1 \leq \tilde{q}^i \leq |D_Q|$, $1 \leq \tilde{k}^i \leq k$
Backtracking recursion

- We can denote this list of pairs via:

\[\tilde{\alpha}_t^{(k)}(q) = \left((\tilde{q}^1, \tilde{k}^1), (\tilde{q}^2, \tilde{k}^2), \ldots, (\tilde{q}^k, \tilde{k}^k) \right) \]

(7.65)

where \(1 \leq \tilde{q}^i \leq |D_Q|, 1 \leq \tilde{k}^i \leq k \)

- denote quantities like the \(\ell \text{th} \) entry in this tuple of pairs using double arguments “\((q)(\ell)\)” as in:

\[(\tilde{q}, \tilde{k}) = \tilde{\alpha}_t^{(k)}(q)(\ell) \]

(7.66)

where \(1 \leq \ell \leq k, \ 1 \leq \tilde{q} \leq |D_Q|, \) and \(1 \leq \tilde{k} \leq k. \)
Backtracking recursion

- At the very last time step T, we can then compute

$$\tilde{\alpha}^{(k)}_T \in \arg\oplus_{r} \alpha^{(k)}_T (r) \quad (7.67)$$

which then gives a length-k list of pairs of states and position in the k-tuple at that state.
Backtracking recursion

- At the very last time step T, we can then compute

$$\tilde{\alpha}^{(k)}_T \in \arg\max_r \alpha^{(k)}_T(r)$$

which then gives a length-k list of pairs of states and position in the k-tuple at that state.

- The states in this list correspond to the states of the k maximum paths through the HMM, and the index into the k-tuple gives the position within the k-tuple from which we can obtain the value.
Backtracking recursion

- At the very last time step T, we can then compute

$$\tilde{\alpha}_T^{(k)} \in \arg\max_r \alpha_T^{(k)}(r) \quad (7.67)$$

which then gives a length-k list of pairs of states and position in the k-tuple at that state.

- The states in this list correspond to the states of the k maximum paths through the HMM, and the index into the k-tuple gives the position within the k-tuple from which we can obtain the value.

- Note also that the observation scores ($p(\bar{x}_T|q)$ over q) at time T are finally (implicitly) used here.
Backtracking

● Recall again standard Viterbi backtracking from lecture 5, on next slide:
MPE/Viterbi path - summary

Forward Equations

\[
\begin{align*}
\alpha_q^m(1) &= p(\bar{x}_1|Q_1 = q) \\
\alpha_q^m(t) &= p(\bar{x}_t|Q_t = q) \max_r p(Q_t = q|Q_{t-1} = r) \alpha_r^m(t-1)
\end{align*}
\] (7.21)

(7.22)

And the forward equation for storing the back indices:

\[
\tilde{\alpha}_q^m(t) \in \arg\max_r p(Q_t = q|Q_{t-1} = r) \alpha_r^m(t-1)
\] (7.23)

Backward algorithm, to compute the Viterbi path

1. Compute \(q_T^* \in \arg\max_q \alpha_q^m(T) \)
2. for \(t = T \ldots 2 \) do
3. Set \(q_{t-1}^* \leftarrow \tilde{\alpha}_{q_t^*}^m(t) \)
k-Best Backtracking

At the final T step, we need to find the k top scoring positions, like above.

\[
\left((q^*_1, k^*_1), (q^*_2, k^*_2), \ldots, (q^*_k, k^*_k)\right) = \tilde{\alpha}^{(k)}_T \in \arg\oplus_r \alpha^{(k)}_T(r)
\]

(7.68)
At the final T step, we need to find the k top scoring positions, like above.

\[
\left((q^*_1, k^*_1), (q^*_2, k^*_2), \ldots, (q^*_k, k^*_k) \right) = \tilde{\alpha}^{(k)}(T) \in \arg\oplus_r \alpha^{(k)}(r)
\]

Once we have these k state-element pairs, we look up the index at each of those k state-element pairs, to get a new set of k state-element pairs. That is, we construct a new k-tuple of pairs as follows:

\[
\left(\tilde{\alpha}^{(k)}(T)(q^*_1)(k^*_1), \tilde{\alpha}^{(k)}(T)(q^*_2)(k^*_2), \ldots, \tilde{\alpha}^{(k)}(T)(q^*_k)(k^*_k) \right)
\]
k-best Backtracking

- At the final T step, we need to find the k top scoring positions, like above.

\[
\bigg((q_T^1, k_T^1), (q_T^2, k_T^2), \ldots, (q_T^k, k_T^k)\bigg) = \tilde{\alpha}^{(k)}_T \in \arg\oplus_{r} \alpha^{(k)}_T(r)
\]

(7.68)

- Once we have these k state-element pairs, we look up the index at each of those k state-element pairs, to get a new set of k state-element pairs. That is, we construct a new k-tuple of pairs as follows:

\[
\bigg(\tilde{\alpha}^{(k)}_T(q_T^1)(k_T^1), \tilde{\alpha}^{(k)}_T(q_T^2)(k_T^2), \ldots, \tilde{\alpha}^{(k)}_T(q_T^k)(k_T^k)\bigg)
\]

(7.69)

Note that each entry in this k-tuple is still a pair, but it a pair that points to an entry in the collection of k-tuples at time $T - 1$.
Each entry in a k-tuple at time $T-1$ also contains a pair, so the above k-tuple of pairs can be converted into a new tuple of pairs.

\[
\left((q_{T-1}^1, k_{T-1}^1), (q_{T-1}^2, k_{T-1}^2), \ldots, (q_{T-1}^k, k_{T-1}^k) \right)
= \left(\tilde{\alpha}_T^{(k)}(q_T^1)(k_T^1), \tilde{\alpha}_T^{(k)}(q_T^2)(k_T^2), \ldots, \tilde{\alpha}_T^{(k)}(q_T^k)(k_T^k) \right) \tag{7.70}
\]
k-best Backtracking

- Each entry in a k-tuple at time $T - 1$ also contains a pair, so the above k-tuple of pairs can be converted into a new tuple of pairs.

\[
\left((q_{T-1}^1, k_{T-1}^1), (q_{T-1}^2, k_{T-1}^2), \ldots, (q_{T-1}^k, k_{T-1}^k)\right) = \left(\tilde{\alpha}_T^{(k)}(q_{T-1}^1)(k_{T-1}^1), \tilde{\alpha}_T^{(k)}(q_{T-1}^2)(k_{T-1}^2), \ldots, \tilde{\alpha}_T^{(k)}(q_{T-1}^k)(k_{T-1}^k)\right)
\] \hspace{1cm} (7.70)

- This can then be used to construct the k-tuple of pairs at time step $T - 2$ as follows:

\[
\left((q_{T-2}^1, k_{T-2}^1), (q_{T-2}^2, k_{T-2}^2), \ldots, (q_{T-2}^k, k_{T-2}^k)\right) = \left(\tilde{\alpha}_{T-1}^{(k)}(q_{T-1}^1)(k_{T-1}^1), \tilde{\alpha}_{T-1}^{(k)}(q_{T-1}^2)(k_{T-1}^2), \ldots, \tilde{\alpha}_{T-1}^{(k)}(q_{T-1}^k)(k_{T-1}^k)\right)
\] \hspace{1cm} (7.71)
The above backtracking algorithm can be written as follows:

1. Compute \(\left((q_{T1}^*, k_{T1}^*), (q_{T2}^*, k_{T2}^*), \ldots, (q_{Tk}^*, k_{Tk}^*)\right) = \tilde{\alpha}_T^{(k)} \in \arg\max_r \alpha_T^{(k)}(r) \)

2. for \(t = T \ldots 2 \) do

3. Set \(\left((q_{t-1}^*, k_{t-1}^*), (q_{t-1}^*, k_{t-1}^*), \ldots, (q_{t-1}^*, k_{t-1}^*)\right) \leftarrow\)

 \[
 \left(\tilde{\alpha}_t^{(k)}(q_{t1}^*)(k_{t1}^*), \tilde{\alpha}_t^{(k)}(q_{t2}^*)(k_{t2}^*), \ldots \tilde{\alpha}_t^{(k)}(q_{tk}^*)(k_{tk}^*)\right)
 \]
Complete k-best Forward/Backward algorithm

1. **forwards pass:**
2. \[\text{for } q = 1 \ldots \lvert D_Q \rvert \text{ do} \]
3. \[\alpha_1^{(k)}(q) \leftarrow \mathbb{R}_+^k (p(\bar{x}_1|Q_t = q)) ; \]
4. \[\text{for } t = 2 \ldots T \text{ do} \]
5. \[\text{for } q = 1 \ldots \lvert D_Q \rvert \text{ do} \]
6. \[\alpha_t^{(k)}(q) \leftarrow p(\bar{x}_t|Q_t = q) \bigoplus_r p(Q_t = q|Q_{t-1} = r) \alpha_{t-1}^{(k)}(r) ; \]
7. \[\tilde{\alpha}_t^{(k)}(q) \in \arg\bigoplus_r p(Q_t = q|Q_{t-1} = r) \alpha_{t-1}^{(k)}(r) ; \]
8. \[\tilde{\alpha}_{T}^{(k)} \in \arg\bigoplus_r \alpha_T^{(k)}(r) ; \]
9. **backwards pass:**
10. \[\text{Identify } ((q_1^{*1}, k_1^{*1}), (q_1^{*2}, k_1^{*2}), \ldots, (q_T^{*k}, k_T^{*k})) = \tilde{\alpha}_{T}^{(k)} ; \]
11. \[\text{for } t = T \ldots 2 \text{ do} \]
12. \[\text{Set } ((q_{t-1}^{*1}, k_{t-1}^{*1}), (q_{t-1}^{*2}, k_{t-1}^{*2}), \ldots, (q_{t-1}^{*k}, k_{t-1}^{*k})) \leftarrow \]
\[(\tilde{\alpha}_t^{(k)}(q_t^{*1})(k_t^{*1}), \tilde{\alpha}_t^{(k)}(q_t^{*2})(k_t^{*2}), \ldots \tilde{\alpha}_t^{(k)}(q_t^{*k})(k_t^{*k})) ; \]
Analysis

- one forward pass of T steps and one backwards pass of T steps, so the compute is still linear in T.
Analysis

- one forward pass of T steps and one backwards pass of T steps, so the compute is still linear in T.
- Also, at each time step t we need storage for $k|D_Q|$ cells, so the memory is also still linear in T.
Analysis

- one forward pass of T steps and one backwards pass of T steps, so the compute is still linear in T.
- Also, at each time step t we need storage for $k|D_Q|$ cells, so the memory is also still linear in T.
- Finding the single max entry at each step for a given state costs $O(|D_Q|)$ (leading to $O(|D_Q|^2)$ overall).
Analysis

- one forward pass of T steps and one backwards pass of T steps, so the compute is still linear in T.
- Also, at each time step t we need storage for $k|D_Q|$ cells, so the memory is also still linear in T.
- Finding the single max entry at each step for a given state costs $O(|D_Q|)$ (leading to $O(|D_Q|^2)$ overall).
- Finding the k max entries for a state can still be done in $O(|D_Q|)$ time (yes, independent of $k \leq |D_Q|$) time using a variant of the quick-sort algorithm.
Analysis

- one forward pass of T steps and one backwards pass of T steps, so the compute is still linear in T.

- Also, at each time step t we need storage for $k|D_Q|$ cells, so the memory is also still linear in T.

- Finding the single max entry at each step for a given state costs $O(|D_Q|)$ (leading to $O(|D_Q|^2)$ overall).

- Finding the k max entries for a state can still be done in $O(|D_Q|)$ time (yes, independent of $k \leq |D_Q|$) time using a variant of the quick-sort algorithm.

- such an algorithm finds the k-top entries in an arbitrary order (i.e., it doesn't find the k top in sorted order).
Analysis

- one forward pass of T steps and one backwards pass of T steps, so the compute is still linear in T.
- Also, at each time step t we need storage for $k|D_Q|$ cells, so the memory is also still linear in T.
- Finding the single max entry at each step for a given state costs $O(|D_Q|)$ (leading to $O(|D_Q|^2)$ overall).
- Finding the k max entries for a state can still be done in $O(|D_Q|)$ time (yes, independent of $k \leq |D_Q|$) time using a variant of the quick-sort algorithm.
- Such an algorithm finds the k-top entries in an arbitrary order (i.e., it doesn't find the k top in sorted order).
- Thus, to sort the top k items, we pay an additional $O(k \log k)$ (but typically $k \ll |D_Q|$).
one forward pass of T steps and one backwards pass of T steps, so the compute is still linear in T.

Also, at each time step t we need storage for $k|D_Q|$ cells, so the memory is also still linear in T.

Finding the single max entry at each step for a given state costs $O(|D_Q|)$ (leading to $O(|D_Q|^2)$ overall).

Finding the k max entries for a state can still be done in $O(|D_Q|)$ time (yes, independent of $k \leq |D_Q|$) time using a variant of the quick-sort algorithm.

such an algorithm finds the k-top entries in an arbitrary order (i.e., it doesn't find the k top in sorted order).

Thus, to sort the top k items, we pay an additional $O(k \log k)$ (but typically $k \ll |D_Q|$).

Therefore, the overall time-complexity is now $O(T(|D_Q|^2k \log k))$.

Analysis - memory

- at each \((t, q)\) position, we need now to store a \(k\)-tuple and in each \(k\)-tuple entry we need three values (the value and the two integers).
at each \((t, q)\) position, we need now to store a \(k\)-tuple and in each \(k\)-tuple entry we need three values (the value and the two integers).

Therefore, the memory has gone from \(O(T|D_Q|)\) to \(O(kT|D_Q|)\), which is \(k\)-times worse.
at each \((t, q)\) position, we need now to store a \(k\)-tuple and in each \(k\)-tuple entry we need three values (the value and the two integers).

Therefore, the memory has gone from \(O(T|D_Q|)\) to \(O(kT|D_Q|)\), which is \(k\)-times worse.

there are other algorithms for computing \(k\)-best that do not require \(k\) times the memory, but they do require \(k\) times the time-cost – we cover this next time.
at each \((t, q)\) position, we need now to store a \(k\)-tuple and in each \(k\)-tuple entry we need three values (the value and the two integers).

Therefore, the memory has gone from \(O(T|D_Q|)\) to \(O(kT|D_Q|)\), which is \(k\)-times worse.

there are other algorithms for computing \(k\)-best that do not require \(k\) times the memory, but they do require \(k\) times the time-cost – we cover this next time.

Also, there are other interesting time-space tradeoffs as well with dynamic models, such as the Island algorithm as we will soon see.
Sources for Today’s Lecture

- “doc.pdf” sections 8.1 - 8.3
What HMMs can do

Semiring

k-best

Summary

Scratch

Prof. Jeff Bilmes

EE596A/Winter 2013/DGMs – Lecture 7 - Jan 30th, 2013