Submodular Functions, Optimization, and Applications to Machine Learning
— Spring Quarter, Lecture 18 —

http://j.ee.washington.edu/~bilmes/classes/ee596b_spring_2014/

Prof. Jeff Bilmes
University of Washington, Seattle
Department of Electrical Engineering
http://melodi.ee.washington.edu/~bilmes

June 2nd, 2014
Cumulative Outstanding Reading

- Read Tom McCormick’s overview paper on SFM http://people.commerce.ubc.ca/faculty/mccormick/sfmchap8a.pdf

- Read chapters 1 - 4 from Fujishige book.

- Read lecture 14 slides on lattice theory at our web page (http://j.ee.washington.edu/~bilmes/classes/ee596b_spring_2014/)

Announcements, Assignments, and Reminders

- **Weekly Office Hours**: Wednesdays, 5:00-5:50, or by skype or google hangout (email me).
Class Road Map - IT-I

- L1 (3/31): Motivation, Applications, & Basic Definitions
- L2: (4/2): Applications, Basic Definitions, Properties
- L3: More examples and properties (e.g., closure properties), and examples, spanning trees
- L4: proofs of equivalent definitions, independence, start matroids
- L5: matroids, basic definitions and examples
- L6: More on matroids, System of Distinct Reps, Transversals, Transversal Matroid, Matroid and representation
- L7: Dual Matroids, other matroid properties, Combinatorial Geometries
- L8: Combinatorial Geometries, matroids and greedy, Polyhedra, Matroid Polytopes,
- L9: From Matroid Polytopes to Polymatroids.
- L10: Polymatroids and Submodularity
- L11: More properties of polymatroids, SFM special cases
- L12: polymatroid properties, extreme points polymatroids,
- L13: sat, dep, supp, exchange capacity, examples
- L14: Lattice theory: partially ordered sets; lattices; distributive, modular, submodular, and boolean lattices; ideals and join irreducibles.
- L15: Supp, Base polytope, polymatroids and entropic Venn diagrams, exchange capacity,
- L16: proof that minimum norm point yields min of submodular function, and the lattice of minimizers of a submodular function, Lovasz extension
- L17: Lovasz extension, Choquet Integration, more properties/examples of Lovasz extension, convex minimization and SFM.
- L18: Lovasz extension examples and structured convex norms, The Min-Norm Point Algorithm detailed.
- L19:
- L20:

Finals Week: June 9th-13th, 2014.
Definition 18.2.1

Let f be any capacity on E and $w \in \mathbb{R}^E_+$. The Choquet integral (1954) of w w.r.t. f is defined by

$$C_f(w) = \sum_{i=1}^{m} (w_{e_i} - w_{e_{i+1}}) f(E_i)$$ \hspace{1cm} (18.12)

where in the sum, we have sorted and renamed the elements of E so that $w_{e_1} \geq w_{e_2} \geq \cdots \geq w_{e_m} \geq w_{e_{m+1}} = 0$, and where $E_i = \{e_1, e_2, \ldots, e_i\}$.

- We immediately see that an equivalent formula is as follows:

$$C_f(w) = \sum_{i=1}^{m} w(e_i)(f(E_i) - f(E_{i-1}))$$ \hspace{1cm} (18.13)

where $E_0 \overset{\text{def}}{=} \emptyset$.

Prof. Jeff Bilmes
Lovász extension, as integral

Additional ways we can define the Lovász extension for any (not necessarily submodular) but normalized function f include:

\[
\tilde{f}(w) = \sum_{i=1}^{m} w(e_i) f(e_i|E_{i-1}) = \sum_{i=1}^{m} \lambda_i f(E_i) \quad (18.22)
\]

\[
= \sum_{i=1}^{m-1} f(E_i)(w(e_i) - w(e_{i+1})) + f(E)w(e_m) \quad (18.23)
\]

\[
= \int_{\min \{w_1, \ldots, w_m\}}^{+\infty} f(\{w \geq \alpha\})d\alpha + f(E)\min \{w_1, \ldots, w_m\} \quad (18.24)
\]

\[
= \int_{0}^{+\infty} f(\{w \geq \alpha\})d\alpha + \int_{-\infty}^{0} [f(\{w \geq \alpha\}) - f(E)]d\alpha \quad (18.25)
\]
Lovász extension properties

Using the above, have the following (some of which we’ve seen):

Theorem 18.2.2

Let \(f, g : 2^E \to \mathbb{R} \) be normalized \((f(\emptyset) = g(\emptyset) = 0)\). Then

1. **Superposition of LE operator**: Given \(f \) and \(g \) with Lovász extensions \(\tilde{f} \) and \(\tilde{g} \) then \(\tilde{f} + \tilde{g} \) is the Lovász extension of \(f + g \) and \(\lambda \tilde{f} \) is the Lovász extension of \(\lambda f \) for \(\lambda \in \mathbb{R} \).

2. If \(w \in \mathbb{R}_+^E \) then \(\tilde{f}(w) = \int_0^{+\infty} f(\{w \geq \alpha\})d\alpha \).

3. For \(w \in \mathbb{R}^E \), and \(\alpha \in \mathbb{R} \), we have \(\tilde{f}(w + \alpha 1_E) = \tilde{f}(w) + \alpha f(E) \).

4. **Positive homogeneity**: I.e., \(\tilde{f}(\alpha w) = \alpha \tilde{f}(w) \) for \(\alpha \geq 0 \).

5. For all \(A \subseteq E \), \(\tilde{f}(1_A) = f(A) \).

6. \(f \) symmetric as in \(f(A) = f(E \setminus A) \), \(\forall A \), then \(\tilde{f}(w) = \tilde{f}(-w) \) (\(\tilde{f} \) is even).

7. Given partition \(E \cup E^2 \cup \cdots \cup E^k \) of \(E \) and \(w = \sum_{i=1}^k \gamma_i 1_{E_k} \) with \(\gamma_1 \geq \gamma_2 \geq \cdots \geq \gamma_k \), and with \(E^{1:i} = E^1 \cup E^2 \cup \cdots \cup E^i \), then
 \[
 \tilde{f}(w) = \sum_{i=1}^k \gamma_i f(E^i | E^{1:i-1}) = \sum_{i=1}^{k-1} f(E^{1:i})(\gamma_i - \gamma_{i+1}) + f(E)\gamma_k.
 \]
Minimizing \tilde{f} vs. minimizing f

In fact, we have:

Theorem 18.2.5

Let f be submodular and \tilde{f} be its Lovász extension. Then

$$\min \{ f(A) | A \subseteq E \} = \min_{w \in \{0,1\}^E} \tilde{f}(w) = \min_{w \in [0,1]^E} \tilde{f}(w).$$

Proof.

- First, since $\tilde{f}(1_A) = f(A), \forall A \subseteq V$, we clearly have
 $$\min \{ f(A) | A \subseteq V \} = \min_{w \in \{0,1\}^E} \tilde{f}(w) \geq \min_{w \in [0,1]^E} \tilde{f}(w).$$

- Next, consider any $w \in [0,1]^E$, sort elements $E = \{ e_1, \ldots, e_m \}$ as $w(e_1) \geq w(e_2) \geq \cdots \geq w(e_m)$, define $E_i = \{ e_1, \ldots, e_i \}$, and define $\lambda_m = w(e_m)$ and $\lambda_i = w(e_i) - w(e_{i+1})$ for $i \in \{1, \ldots, m-1\}$.

- Then, as we have seen, $w = \sum_i \lambda_i 1_{E_i}$ and $\lambda_i \geq 0$.

- Also, $\sum_i \lambda_i = w(e_1) \leq 1$.

...
Simple expressions for Lovász E. with $m = 2, E = \{1, 2\}$

- If $w_1 \geq w_2$, then

$$\tilde{f}(w) = w_1 f(\{1\}) + w_2 f(\{2\} \cup \{1\})$$

(18.1)

$$= (w_1 - w_2) f(\{1\}) + w_2 f(\{1, 2\})$$

(18.2)
Simple expressions for Lovász E. with $m = 2$, $E = \{1, 2\}$

- If $w_1 \geq w_2$, then

$$
\tilde{f}(w) = w_1 f(\{1\}) + w_2 f(\{2\} \mid \{1\})
= (w_1 - w_2) f(\{1\}) + w_2 f(\{1, 2\}) \tag{18.1}
$$

- If $w_1 \leq w_2$, then

$$
\tilde{f}(w) = w_2 f(\{2\}) + w_1 f(\{1\} \mid \{2\})
= (w_2 - w_1) f(\{2\}) + w_1 f(\{1, 2\}) \tag{18.3}
$$
If $w_1 \geq w_2$, then

$$\tilde{f}(w) = w_1 f(\{1\}) + w_2 f(\{2\}|\{1\})$$

$$= (w_1 - w_2) f(\{1\}) + w_2 f(\{1, 2\})$$

$$= \frac{1}{2} f(1)(w_1 - w_2) + \frac{1}{2} f(1)(w_1 - w_2)$$

$$+ \frac{1}{2} f(\{1, 2\})(w_1 + w_2) - \frac{1}{2} f(\{1, 2\})(w_1 - w_2)$$

$$+ \frac{1}{2} f(2)(w_1 - w_2) + \frac{1}{2} f(2)(w_2 - w_1)$$
If $w_1 \geq w_2$, then

$$
\tilde{f}(w) = w_1 f(\{1\}) + w_2 f(\{2\}|\{1\})
$$

$$
= (w_1 - w_2) f(\{1\}) + w_2 f(\{1, 2\})
$$

$$
= \frac{1}{2} f(1)(w_1 - w_2) + \frac{1}{2} f(1)(w_1 - w_2)
$$

$$
+ \frac{1}{2} f(\{1, 2\})(w_1 + w_2) - \frac{1}{2} f(\{1, 2\})(w_1 - w_2)
$$

$$
+ \frac{1}{2} f(2)(w_1 - w_2) + \frac{1}{2} f(2)(w_2 - w_1)
$$

A similar (symmetric) expression holds when $w_1 \leq w_2$.
This gives, for general w_1, w_2, that

$$\tilde{f}(w) = \frac{1}{2} (f(\{1\}) + f(\{2\}) - f(\{1, 2\})) |w_1 - w_2|$$ \hspace{1cm} (18.10)

$$+ \frac{1}{2} (f(\{1\}) - f(\{2\}) + f(\{1, 2\})) w_1$$ \hspace{1cm} (18.11)

$$+ \frac{1}{2} (-f(\{1\}) + f(\{2\}) + f(\{1, 2\})) w_2$$ \hspace{1cm} (18.12)

$$= - (f(\{1\}) + f(\{2\}) - f(\{1, 2\})) \min \{w_1, w_2\}$$ \hspace{1cm} (18.13)

$$+ f(\{1\}) w_1 + f(\{2\}) w_2$$ \hspace{1cm} (18.14)
This gives, for general w_1, w_2, that

$$
\tilde{f}(w) = \frac{1}{2} (f(\{1\}) + f(\{2\}) - f(\{1, 2\})) |w_1 - w_2|
$$

(18.10)

$$
+ \frac{1}{2} (f(\{1\}) - f(\{2\}) + f(\{1, 2\})) w_1
$$

(18.11)

$$
+ \frac{1}{2} (-f(\{1\}) + f(\{2\}) + f(\{1, 2\})) w_2
$$

(18.12)

$$
= - (f(\{1\}) + f(\{2\}) - f(\{1, 2\})) \min \{w_1, w_2\}
$$

(18.13)

$$
+ f(\{1\})w_1 + f(\{2\})w_2
$$

(18.14)

Thus, if $f(A) = H(X_A)$ is the entropy function, we have

$$
\tilde{f}(w) = H(e_1)w_1 + H(e_2)w_2 - I(e_1; e_2) \min \{w_1, w_2\}
$$

which must be convex in w, where $I(e_1; e_2)$ is the mutual information.
This gives, for general w_1, w_2, that

$$
\tilde{f}(w) = \frac{1}{2} (f(\{1\}) + f(\{2\}) - f(\{1, 2\})) |w_1 - w_2|
$$

\hspace{1cm} (18.10)

$$
+ \frac{1}{2} (f(\{1\}) - f(\{2\}) + f(\{1, 2\})) w_1
$$

\hspace{1cm} (18.11)

$$
+ \frac{1}{2} (-f(\{1\}) + f(\{2\}) + f(\{1, 2\})) w_2
$$

\hspace{1cm} (18.12)

$$
= - (f(\{1\}) + f(\{2\}) - f(\{1, 2\})) \min \{w_1, w_2\}
$$

\hspace{1cm} (18.13)

$$
+ f(\{1\})w_1 + f(\{2\})w_2
$$

\hspace{1cm} (18.14)

Thus, if $f(A) = H(X_A)$ is the entropy function, we have

$$
\tilde{f}(w) = H(e_1)w_1 + H(e_2)w_2 - I(e_1; e_2) \min \{w_1, w_2\}
$$

which must be convex in w, where $I(e_1; e_2)$ is the mutual information.

This “simple” but general form of the Lovász extension with $m = 2$ can be useful.
Example: $m = 2$, $E = \{1, 2\}$, contours

- If $w_1 \geq w_2$, then

 \[\tilde{f}(w) = w_1 f(\{1\}) + w_2 f(\{2\}|\{1\}) \]

 (18.15)
Example: $m = 2$, $E = \{1, 2\}$, contours

- If $w_1 \geq w_2$, then
 \[\tilde{f}(w) = w_1 f(\{1\}) + w_2 f(\{2\}|\{1\}) \]
 (18.15)

- If $w = (1, 0)/f(\{1\}) = \left(\frac{1}{f(\{1\})}, 0\right)$ then $\tilde{f}(w) = 1$.

Can plot contours of the form $\{w \in \mathbb{R}^2 : \tilde{f}(w) = 1\}$, particularly marked points of form $w = 1_A \times 1_f(A)$ for certain A, where $\tilde{f}(w) = 1$.
Example: $m = 2$, $E = \{1, 2\}$, contours

- If $w_1 \geq w_2$, then

\[
\tilde{f}(w) = w_1 f(\{1\}) + w_2 f(\{2\}|\{1\})
\]

(18.15)

- If $w = (1, 0)/f(\{1\}) = \left(1/f(\{1\}), 0\right)$ then $\tilde{f}(w) = 1$.

- If $w = (1, 1)/f(\{1, 2\})$ then $\tilde{f}(w) = 1$.
Lovász extension examples

Min-Norm Point Algorithm

Example: $m = 2$, $E = \{1, 2\}$, contours

- If $w_1 \geq w_2$, then

\[
\tilde{f}(w) = w_1 f(\{1\}) + w_2 f(\{2\}|\{1\})
\] (18.15)

- If $w = (1, 0)/f(\{1\}) = \left(1/f(\{1\}), 0\right)$ then $\tilde{f}(w) = 1$.
- If $w = (1, 1)/f(\{1, 2\})$ then $\tilde{f}(w) = 1$.

- If $w_1 \leq w_2$, then

\[
\tilde{f}(w) = w_2 f(\{2\}) + w_1 f(\{1\}|\{2\})
\] (18.16)
Example: \(m = 2, \ E = \{1, 2\} \), contours

- If \(w_1 \geq w_2 \), then
 \[
 \tilde{f}(w) = w_1 f(\{1\}) + w_2 f(\{2\}|\{1\})
 \]
 (18.15)

 - If \(w = (1, 0)/f(\{1\}) = (1/f(\{1\}), 0) \) then \(\tilde{f}(w) = 1 \).
 - If \(w = (1, 1)/f(\{1, 2\}) \) then \(\tilde{f}(w) = 1 \).

- If \(w_1 \leq w_2 \), then
 \[
 \tilde{f}(w) = w_2 f(\{2\}) + w_1 f(\{1\}|\{2\})
 \]
 (18.16)

 - If \(w = (0, 1)/f(\{2\}) = (0, 1/f(\{2\})) \) then \(\tilde{f}(w) = 1 \).
Example: \(m = 2, \ E = \{1, 2\}, \) contours

- If \(w_1 \geq w_2, \) then
 \[
 \tilde{f}(w) = w_1 f(\{1\}) + w_2 f(\{2\}|\{1\})
 \]
 (18.15)

 - If \(w = (1, 0)/f(\{1\}) = \left(1/f(\{1\}), 0\right) \) then \(\tilde{f}(w) = 1. \)
 - If \(w = (1, 1)/f(\{1, 2\}) \) then \(\tilde{f}(w) = 1. \)

- If \(w_1 \leq w_2, \) then
 \[
 \tilde{f}(w) = w_2 f(\{2\}) + w_1 f(\{1\}|\{2\})
 \]
 (18.16)

 - If \(w = (0, 1)/f(\{2\}) = (0, 1/f(\{2\})) \) then \(\tilde{f}(w) = 1. \)
 - If \(w = (1, 1)/f(\{1, 2\}) \) then \(\tilde{f}(w) = 1. \)
Lovász extension examples

Example: $m = 2$, $E = \{1, 2\}$, contours

- If $w_1 \geq w_2$, then
 \[
 \tilde{f}(w) = w_1 f(\{1\}) + w_2 f(\{2\} | \{1\})
 \]
 (18.15)

 - If $w = (1, 0)/f(\{1\}) = (1/f(\{1\}), 0)$ then $\tilde{f}(w) = 1$.
 - If $w = (1, 1)/f(\{1, 2\})$ then $\tilde{f}(w) = 1$.

- If $w_1 \leq w_2$, then
 \[
 \tilde{f}(w) = w_2 f(\{2\}) + w_1 f(\{1\} | \{2\})
 \]
 (18.16)

 - If $w = (0, 1)/f(\{2\}) = (0, 1/f(\{2\}))$ then $\tilde{f}(w) = 1$.
 - If $w = (1, 1)/f(\{1, 2\})$ then $\tilde{f}(w) = 1$.

- Can plot contours of the form \[\{w \in \mathbb{R}^2 : \tilde{f}(w) = 1\} \], particular marked points of form $w = 1_A \times \frac{1}{f(A)}$ for certain A, where $\tilde{f}(w) = 1$.
Example: $m = 2, \ E = \{1, 2\}$

- Contour plot of $m = 2$ Lovász extension (from Bach-2011).
Example: $m = 3, \ E = \{1, 2, 3\}$

- In order to visualize in 3D, we make a few simplifications.
Example: $m = 3, \ E = \{1, 2, 3\}$

- In order to visualize in 3D, we make a few simplifications.

- Consider any submodular f' and $x \in B_{f'}$. Then $f(A) = f'(A) - x(A)$ is submodular.
Example: $m = 3, \ E = \{1, 2, 3\}$

- In order to visualize in 3D, we make a few simplifications.
- Consider any submodular f' and $x \in B_{f'}$. Then
 \[f(A) = f'(A) - x(A) \] is submodular, and moreover
 \[f(E) = f'(E) - x(E) = 0. \]
Example: $m = 3, E = \{1, 2, 3\}$

- In order to visualize in 3D, we make a few simplifications.
- Consider any submodular f' and $x \in B_{f'}$. Then $f(A) = f'(A) - x(A)$ is submodular, and moreover $f(E) = f'(E) - x(E) = 0$.
- Hence, from $\tilde{f}(w + \alpha 1_E) = \tilde{f}(w) + \alpha f(E)$, we have that $\tilde{f}(w + \alpha 1_E) = \tilde{f}(w)$.
Example: \(m = 3, \ E = \{1, 2, 3\} \)

- In order to visualize in 3D, we make a few simplifications.
- Consider any submodular \(f' \) and \(x \in B_{f'} \). Then \(f(A) = f'(A) - x(A) \) is submodular, and moreover \(f(E) = f'(E) - x(E) = 0 \).
- Hence, from \(\tilde{f}(w + \alpha 1_E) = \tilde{f}(w) + \alpha f(E) \), we have that \(\tilde{f}(w + \alpha 1_E) = \tilde{f}(w) \).
- Thus, we can look “down” on the contour plot of the Lovász extension, \(\{w : \tilde{f}(w) = 1\} \), from a vantage point right on the line \(\{x : x = \alpha 1_E, \alpha > 0\} \) since moving in direction \(1_E \) changes nothing.
Example: \(m = 3, \ E = \{1, 2, 3\} \)

Example 1 (from Bach-2011): \(f(A) = 1_{|A|\in\{1,2\}} \)
\[= \min \{|A|, 1\} + \min \{|E \setminus A|, 1\} - 1 \] is submodular, and
\[\tilde{f}(w) = \max_{k \in \{1,2,3\}} w_k - \min_{k \in \{1,2,3\}} w_k. \]
Example: \(m = 3, \ E = \{1, 2, 3\} \)

- Example 1 (from Bach-2011):
 \[
 f(A) = \mathbf{1}_{|A| \in \{1, 2\}} = \min \{|A|, 1\} + \min \{|E \setminus A|, 1\} - 1
 \]
 is submodular, and
 \[
 \tilde{f}(w) = \max_{k \in \{1, 2, 3\}} w_k - \min_{k \in \{1, 2, 3\}} w_k.
 \]
Example: \(m = 3, \ E = \{1, 2, 3\} \)

- Example 2 (from Bach-2011):
 \[
 f(A) = |1_{1 \in A} - 1_{2 \in A}| + |1_{2 \in A} - 1_{3 \in A}|
 \]

This gives a "total variation" function for the Lovász extension, with
\[
\tilde{f}(w) = |w_1 - w_2| + |w_2 - w_3|,
\]
aprior top refer piecewise-constant signals.
Example: $m = 3, \ E = \{1, 2, 3\}$

- Example 2 (from Bach-2011):
 \[
 f(A) = |\mathbf{1}_{1 \in A} - \mathbf{1}_{2 \in A}| + |\mathbf{1}_{2 \in A} - \mathbf{1}_{3 \in A}|
 \]

- This gives a “total variation” function for the Lovász extension, with
 \[
 \tilde{f}(w) = |w_1 - w_2| + |w_2 - w_3|,
 \]
a prior to prefer piecewise-constant signals.
From “Nonlinear total variation based noise removal algorithms” Rudin, Osher, and Fatemi, 1992. Top left original, bottom right total variation.
Example: Lovász extension of concave over modular

Let \(m : E \rightarrow \mathbb{R}_+ \) be a modular function and define \(f(A) = g(m(A)) \) where \(g \) is concave. Then \(f \) is submodular.
Example: Lovász extension of concave over modular

- Let $m : E \rightarrow \mathbb{R}_+$ be a modular function and define $f(A) = g(m(A))$ where g is concave. Then f is submodular.
- Let $M_j = \sum_{i=1}^{j} m(e_i)$
Example: Lovász extension of concave over modular

- Let $m : E \to \mathbb{R}_+$ be a modular function and define $f(A) = g(m(A))$ where g is concave. Then f is submodular.
- Let $M_j = \sum_{i=1}^{j} m(e_i)$
- $\tilde{f}(w)$ is given as

$$\tilde{f}(w) = \sum_{i=1}^{m} w(e_i)(g(M_i) - g(M_{i-1}))$$ (18.17)
Example: Lovász extension of concave over modular

- Let $m : E \to \mathbb{R}_+$ be a modular function and define $f(A) = g(m(A))$ where g is concave. Then f is submodular.

- Let $M_j = \sum_{i=1}^{j} m(e_i)$

- $\tilde{f}(w)$ is given as

$$\tilde{f}(w) = \sum_{i=1}^{m} w(e_i)(g(M_i) - g(M_{i-1})) \quad (18.17)$$

- And if $m(A) = |A|$, we get

$$\tilde{f}(w) = \sum_{i=1}^{m} w(e_i)(g(i) - g(i-1)) \quad (18.18)$$
Example: Lovász extension and cut functions

- Cut Function: Given a non-negative weighted graph \(G = (V, E, m) \) where \(m : E \to \mathbb{R}_+ \) is a modular function over the edges, we know from Lecture 2 that \(f : 2^V \to \mathbb{R}_+ \) with \(f(X) = m(\Gamma(X)) \) where \(\Gamma(X) = \{(u, v) | (u, v) \in E, u \in X, v \in V \setminus X\} \) is non-monotone submodular.
Example: Lovász extension and cut functions

- **Cut Function:** Given a non-negative weighted graph $G = (V, E, m)$ where $m : E \to \mathbb{R}_+$ is a modular function over the edges, we know from Lecture 2 that $f : 2^V \to \mathbb{R}_+$ with $f(X) = m(\Gamma(X))$ where $\Gamma(X) = \{(u, v) | (u, v) \in E, u \in X, v \in V \setminus X\}$ is non-monotone submodular.

- **Simple way to write it, with $m_{ij} = m((i, j))$:**

 $$f(X) = \sum_{i \in X, j \in V \setminus X} m_{ij} \quad (18.19)$$

Exercise: show that Lovász extension of graph cut may be written as:

$$\tilde{f}(w) = \sum_{i, j \in V} m_{ij} \max\{w_i - w_j, 0\} \quad (18.20)$$

where elements are ordered as usual, $w_1 \geq w_2 \geq \cdots \geq w_n$. This is also a form of "total variation".
Example: Lovász extension and cut functions

- **Cut Function**: Given a non-negative weighted graph $G = (V, E, m)$ where $m : E \to \mathbb{R}_+$ is a modular function over the edges, we know from Lecture 2 that $f : 2^V \to \mathbb{R}_+$ with $f(X) = m(\Gamma(X))$ where $\Gamma(X) = \{(u, v) | (u, v) \in E, u \in X, v \in V \setminus X\}$ is non-monotone submodular.

- Simple way to write it, with $m_{ij} = m((i, j))$:

$$f(X) = \sum_{i \in X, j \in V \setminus X} m_{ij} \quad (18.19)$$

- **Exercise**: show that Lovász extension of graph cut may be written as:

$$\tilde{f}(w) = \sum_{i, j \in V} m_{ij} \max\{(w_i - w_j), 0\} \quad (18.20)$$

where elements are ordered as usual, $w_1 \geq w_2 \geq \cdots \geq w_n$.
Example: Lovász extension and cut functions

- Cut Function: Given a non-negative weighted graph $G = (V, E, m)$ where $m : E \rightarrow \mathbb{R}_+$ is a modular function over the edges, we know from Lecture 2 that $f : 2^V \rightarrow \mathbb{R}_+$ with $f(X) = m(\Gamma(X))$ where $\Gamma(X) = \{(u, v) | (u, v) \in E, u \in X, v \in V \setminus X\}$ is non-monotone submodular.

- Simple way to write it, with $m_{ij} = m((i, j))$:

 $$f(X) = \sum_{i \in X, j \in V \setminus X} m_{ij}$$ \hspace{1cm} (18.19)

- Exercise: show that Lovász extension of graph cut may be written as:

 $$\tilde{f}(w) = \sum_{i, j \in V} m_{ij} \max \{(w_i - w_j), 0\}$$ \hspace{1cm} (18.20)

 where elements are ordered as usual, $w_1 \geq w_2 \geq \cdots \geq w_n$.

- This is also a form of “total variation”
A few more Lovász extension examples

Some additional submodular functions and their Lovász extensions, where \(w(e_1) \geq w(e_2) \geq \cdots \geq w(e_m) \geq 0 \). Let \(W_k \triangleq \sum_{i=1}^{k} w(e_i) \).

<table>
<thead>
<tr>
<th>(f(A))</th>
<th>(\tilde{f}(w))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(</td>
<td>A</td>
</tr>
<tr>
<td>(\min(</td>
<td>A</td>
</tr>
</tbody>
</table>

(thanks to K. Narayanan).
Supervised And Unsupervised Machine Learning

- Given training data \(\mathcal{D} = \{(x_i, y_i)\}_{i=1}^{m} \) with \((x_i, y_i) \in \mathbb{R}^n \times \mathbb{R}\), perform the following risk minimization problem:

\[
\min_{w \in \mathbb{R}^n} \frac{1}{m} \sum_{i=1}^{m} \ell(y_i, w^\top x_i) + \lambda \Omega(w),
\]

(18.21)

where \(\ell(\cdot)\) is a loss function (e.g., squared error) and \(\Omega(w)\) is a norm.

- When data has multiple responses \((x_i, y_i) \in \mathbb{R}^n \times \mathbb{R}^k\), learning becomes:

\[
\min_{w_1, \ldots, w_k \in \mathbb{R}^n} \sum_{j=1}^{k} \frac{1}{m} \sum_{i=1}^{m} \ell(y_i^{k_j}, (w_k^j)^\top x_i) + \lambda \Omega(w_k),
\]

(18.22)

- When data has multiple responses only that are observed, \((y_i) \in \mathbb{R}^k\), we get dictionary learning (Krause & Guestrin, Das & Kempe):

\[
\min_{x_1, \ldots, x_m, w_1, \ldots, w_k \in \mathbb{R}^n} \sum_{i=1}^{m} \sum_{j=1}^{k} \frac{1}{m} \sum_{i=1}^{m} \ell(y_i^{k_j}, (w_k^j)^\top x_i) + \lambda \Omega(w_k),
\]

(18.23)
Norms, sparse norms, and computer vision

- Common norms include p-norm $\Omega(w) = \|w\|_p = (\sum_{i=1}^{p} w_i^p)^{1/p}$
Norms, sparse norms, and computer vision

- Common norms include \(p \)-norm \(\Omega(w) = \|w\|_p = \left(\sum_{i=1}^{p} w_i^p\right)^{1/p} \)
- 1-norm promotes sparsity (prefer solutions with zero entries).
Common norms include p-norm $\Omega(w) = \|w\|_p = \left(\sum_{i=1}^{p} w_i^p\right)^{1/p}$

1-norm promotes sparsity (prefer solutions with zero entries).

Image denoising, total variation is useful, norm takes form:

$$\Omega(w) = \sum_{i=2}^{N} |w_i - w_{i-1}|$$ \hspace{1cm} (18.24)
Norms, sparse norms, and computer vision

- Common norms include p-norm $\Omega(w) = \|w\|_p = (\sum_{i=1}^{p} w_i^p)^{1/p}$
- 1-norm promotes sparsity (prefer solutions with zero entries).
- Image denoising, total variation is useful, norm takes form:

$$\Omega(w) = \sum_{i=2}^{N} |w_i - w_{i-1}| \quad (18.24)$$

- Points of difference should be “sparse” (frequently zero).

(Rodriguez, 2009)
Submodular parameterization of a sparse convex norm

- Prefer convex norms since they can be solved.
Submodular parameterization of a sparse convex norm

- Prefer convex norms since they can be solved.
- For \(w \in \mathbb{R}^V \), \(\text{supp}(w) \in \{0, 1\}^V \) has \(\text{supp}(w)(v) = 1 \) iff \(w(v) > 0 \)
Submodular parameterization of a sparse convex norm

- Prefer convex norms since they can be solved.
- For $w \in \mathbb{R}^V$, $\text{supp}(w) \in \{0, 1\}^V$ has $\text{supp}(w)(v) = 1$ iff $w(v) > 0$
- Desirable sparse norm: count the non-zeros, $\|w\|_0 = \text{supp}(w)$.

Ex: total variation is Lovász-ext. of graph cut, but \(\exists \) many more!
Submodular parameterization of a sparse convex norm

- Prefer convex norms since they can be solved.
- For \(w \in \mathbb{R}^V \), \(\text{supp}(w) \in \{0, 1\}^V \) has \(\text{supp}(w)(v) = 1 \) iff \(w(v) > 0 \)
- Desirable sparse norm: count the non-zeros, \(\|w\|_0 = \text{supp}(w) \).
- Using \(\Omega(w) = \|w\|_0 \) is NP-hard, instead we often optimize tightest convex relaxation, \(\|w\|_1 \) which is the convex envelope.

\[
\begin{align*}
\|w\|_0 & = \text{supp}(w) \\
\|w\|_1 & = \text{convex envelope of } \Omega(w)
\end{align*}
\]
Submodular parameterization of a sparse convex norm

- Prefer convex norms since they can be solved.
- For \(w \in \mathbb{R}^V \), \(\text{supp}(w) \in \{0, 1\}^V \) has \(\text{supp}(w)(v) = 1 \) iff \(w(v) > 0 \)
- Desirable sparse norm: count the non-zeros, \(\|w\|_0 = \text{supp}(w) \).
- Using \(\Omega(w) = \|w\|_0 \) is NP-hard, instead we often optimize tightest convex relaxation, \(\|w\|_1 \) which is the convex envelope.
- With \(\|w\|_0 \) or its relaxation, each non-zero element has equal degree of penalty. Penalties do not interact.
Submodular parameterization of a sparse convex norm

- Prefer convex norms since they can be solved.
- For $w \in \mathbb{R}^V$, $\text{supp}(w) \in \{0, 1\}^V$ has $\text{supp}(w)(v) = 1$ iff $w(v) > 0$
- Desirable sparse norm: count the non-zeros, $\|w\|_0 = \text{supp}(w)$.
- Using $\Omega(w) = \|w\|_0$ is NP-hard, instead we often optimize tightest convex relaxation, $\|w\|_1$ which is the convex envelope.
- With $\|w\|_0$ or its relaxation, each non-zero element has equal degree of penalty. Penalties do not interact.
- Given submodular function $f : 2^V \rightarrow \mathbb{R}_+$, $f(\text{supp}(w))$ measures the “complexity” of the non-zero pattern of w; can have more non-zero values if they cooperate (via f) with other non-zero values.
Submodular parameterization of a sparse convex norm

- Prefer convex norms since they can be solved.
- For \(w \in \mathbb{R}^V \), \(\text{supp}(w) \in \{0, 1\}^V \) has \(\text{supp}(w)(v) = 1 \) iff \(w(v) > 0 \)
- Desirable sparse norm: count the non-zeros, \(\|w\|_0 = \text{supp}(w) \).
- Using \(\Omega(w) = \|w\|_0 \) is NP-hard, instead we often optimize tightest convex relaxation, \(\|w\|_1 \) which is the convex envelope.
- With \(\|w\|_0 \) or its relaxation, each non-zero element has equal degree of penalty. Penalties do not interact.
- Given submodular function \(f : 2^V \to \mathbb{R}_+ \), \(f(\text{supp}(w)) \) measures the “complexity” of the non-zero pattern of \(w \); can have more non-zero values if they cooperate (via \(f \)) with other non-zero values.
- \(f(\text{supp}(w)) \) is hard to optimize, but it’s convex envelope \(\tilde{f}(|w|) \) (i.e., largest convex under-estimator of \(f(\text{supp}(w)) \)) is obtained via the Lovász-extension \(\tilde{f} \) of \(f \) (Vondrák 2007, Bach 2010).
Submodular parameterization of a sparse convex norm

- Prefer convex norms since they can be solved.
- For \(w \in \mathbb{R}^V \), \(\text{supp}(w) \in \{0, 1\}^V \) has \(\text{supp}(w)(v) = 1 \) iff \(w(v) > 0 \)
- Desirable sparse norm: count the non-zeros, \(\|w\|_0 = \text{supp}(w) \).
- Using \(\Omega(w) = \|w\|_0 \) is NP-hard, instead we often optimize tightest convex relaxation, \(\|w\|_1 \) which is the convex envelope.
- With \(\|w\|_0 \) or its relaxation, each non-zero element has equal degree of penalty. Penalties do not interact.
- Given submodular function \(f : 2^V \rightarrow \mathbb{R}_+ \), \(f(\text{supp}(w)) \) measures the "complexity" of the non-zero pattern of \(w \); can have more non-zero values if they cooperate (via \(f \)) with other non-zero values.
- \(f(\text{supp}(w)) \) is hard to optimize, but it’s convex envelope \(\tilde{f}(|w|) \) (i.e., largest convex under-estimator of \(f(\text{supp}(w)) \)) is obtained via the Lovász-extension \(\tilde{f} \) of \(f \) (Vondrák 2007, Bach 2010).
- Submodular functions thus parameterize structured convex sparse norms via the Lovász-extension!
Submodular parameterization of a sparse convex norm

- Prefer convex norms since they can be solved.
- For \(w \in \mathbb{R}^V \), \(\text{supp}(w) \in \{0, 1\}^V \) has \(\text{supp}(w)(v) = 1 \) iff \(w(v) > 0 \)
- Desirable sparse norm: count the non-zeros, \(\|w\|_0 = \text{supp}(w) \).
- Using \(\Omega(w) = \|w\|_0 \) is NP-hard, instead we often optimize tightest convex relaxation, \(\|w\|_1 \) which is the convex envelope.
- With \(\|w\|_0 \) or its relaxation, each non-zero element has equal degree of penalty. Penalties do not interact.
- Given submodular function \(f : 2^V \to \mathbb{R}_+ \), \(f(\text{supp}(w)) \) measures the “complexity” of the non-zero pattern of \(w \); can have more non-zero values if they cooperate (via \(f \)) with other non-zero values.
- \(f(\text{supp}(w)) \) is hard to optimize, but it’s convex envelope \(\tilde{f}(|w|) \) (i.e., largest convex under-estimator of \(f(\text{supp}(w)) \)) is obtained via the Lovász-extension \(\tilde{f} \) of \(f \) (Vondrák 2007, Bach 2010).
- Submodular functions thus parameterize structured convex sparse norms via the Lovász-extension!
- Ex: total variation is Lovász-ext. of graph cut, but \(\exists \) many more!
Lovász extension and norms

- Using Lovász extension to define various norms of the form $\|w\|_{\tilde{f}} = \tilde{f}(|w|)$, renders the function symmetric about all orthants (i.e., $\|w\|_{\tilde{f}} = \|b \odot w\|_{\tilde{f}}$ where $b \in \{-1, 1\}^m$ and \odot is element-wise multiplication).
Lovász extension and norms

- Using Lovász extension to define various norms of the form $\|w\|_{\tilde{f}} = \tilde{f}(|w|)$, renders the function symmetric about all orthants (i.e., $\|w\|_{\tilde{f}} = \|b \odot w\|_{\tilde{f}}$ where $b \in \{-1, 1\}^m$ and \odot is element-wise multiplication).

- Simple example. The Lovász extension of the modular function $f(A) = |A|$ is the ℓ_1 norm, and the Lovász extension of the modular function $f(A) = m(A)$ is the weighted ℓ_1 norm.
Lovász extension and norms

- Using Lovász extension to define various norms of the form \(\|w\|_{\tilde{f}} = \tilde{f}(|w|) \), renders the function symmetric about all orthants (i.e., \(\|w\|_{\tilde{f}} = \|b \odot w\|_{\tilde{f}} \) where \(b \in \{-1, 1\}^m \) and \(\odot \) is element-wise multiplication).

- Simple example. The Lovász extension of the modular function \(f(A) = |A| \) is the \(\ell_1 \) norm, and the Lovász extension of the modular function \(f(A) = m(A) \) is the weighted \(\ell_1 \) norm.

- With more general submodular functions, one can generate a large and interesting variety of norms, all of which have polyhedral contours (unlike, say, something like the \(\ell_2 \) norm).
Lovász extension and norms

- Using Lovász extension to define various norms of the form \(\|w\|_{\tilde{f}} = \tilde{f}(|w|) \), renders the function symmetric about all orthants (i.e., \(\|w\|_{\tilde{f}} = \|b \odot w\|_{\tilde{f}} \) where \(b \in \{-1, 1\}^m \) and \(\odot \) is element-wise multiplication).

- Simple example. The Lovász extension of the modular function \(f(A) = |A| \) is the \(\ell_1 \) norm, and the Lovász extension of the modular function \(f(A) = m(A) \) is the weighted \(\ell_1 \) norm.

- With more general submodular functions, one can generate a large and interesting variety of norms, all of which have polyhedral contours (unlike, say, something like the \(\ell_2 \) norm).

- Hence, not all norms come from the Lovász extension of some submodular function.
Lovász extension and norms

- Using Lovász extension to define various norms of the form $\|w\|_{\tilde{f}} = \tilde{f}(|w|)$, renders the function symmetric about all orthants (i.e., $\|w\|_{\tilde{f}} = \|b \odot w\|_{\tilde{f}}$ where $b \in \{-1, 1\}^m$ and \odot is element-wise multiplication).

- Simple example. The Lovász extension of the modular function $f(A) = |A|$ is the ℓ_1 norm, and the Lovász extension of the modular function $f(A) = m(A)$ is the weighted ℓ_1 norm.

- With more general submodular functions, one can generate a large and interesting variety of norms, all of which have polyhedral contours (unlike, say, something like the ℓ_2 norm).

- Hence, not all norms come from the Lovász extension of some submodular function.

- Similarly, not all convex functions are the Lovász extension of some submodular function.
Lovász extension and norms

- Using Lovász extension to define various norms of the form \(\| w \|_{\tilde{f}} = \tilde{f}(\|w\|) \), renders the function symmetric about all orthants (i.e., \(\| w \|_{\tilde{f}} = \| b \odot w \|_{\tilde{f}} \) where \(b \in \{-1, 1\}^m \) and \(\odot \) is element-wise multiplication).

- Simple example. The Lovász extension of the modular function \(f(A) = |A| \) is the \(\ell_1 \) norm, and the Lovász extension of the modular function \(f(A) = m(A) \) is the weighted \(\ell_1 \) norm.

- With more general submodular functions, one can generate a large and interesting variety of norms, all of which have polyhedral contours (unlike, say, something like the \(\ell_2 \) norm).

- Hence, not all norms come from the Lovász extension of some submodular function.

- Similarly, not all convex functions are the Lovász extension of some submodular function.

- Bach-2011 has a complete discussion of this.
The following four slides are review, and are from Lectures 12, 15, and 16.
Lovász extension examples

A polymatroid function’s polyhedron is a polymatroid.

Theorem 18.4.1

Let f be a submodular function defined on subsets of E. For any $x \in \mathbb{R}^E$, we have:

$$\text{rank}(x) = \max \{ y(E) : y \leq x, y \in P_f \} = \min \{ x(A) + f(E \setminus A) : A \subseteq E \}$$ \hspace{1cm} (18.5)

If we take x to be zero, we get:

Corollary 18.4.2

Let f be a submodular function defined on subsets of E. $x \in \mathbb{R}^E$, we have:

$$\text{rank}(0) = \max \{ y(E) : y \leq 0, y \in P_f \} = \min \{ f(A) : A \subseteq E \}$$ \hspace{1cm} (18.6)
Restating what we saw before, we have:

$$\max \{ y(E) | y \in P_f, y \leq 0 \} = \min \{ f(X) | X \subseteq V \}$$ \hspace{1cm} (18.12)

Consider the optimization:

$$\begin{align*}
\text{minimize} & \quad \|x\|_2^2 \\
\text{subject to} & \quad x \in B_f
\end{align*}$$ \hspace{1cm} (18.13a)

where B_f is the base polytope of submodular f, and

$$\|x\|_2^2 = \sum_{e \in E} x(e)^2$$

is the squared 2-norm. Let x^* be the optimal solution.

Note, x^* is the unique optimal solution since we have a strictly convex objective over a set of convex constraints.

x^* is called the \textbf{minimum norm point} of the base polytope.
Given optimal solution \(x^* \) to the above, consider the quantities

\[
y^* = x^* \wedge 0 = (\min(x^*(e), 0) | e \in E)
\]

(18.1)

\[
A_- = \{ e : x^*(e) < 0 \}
\]

(18.2)

\[
A_0 = \{ e : x^*(e) \leq 0 \}
\]

(18.3)

Thus, we immediately have that:

\[
A_- \subseteq A_0
\]

(18.4)

and that

\[
x^*(A_-) = x^*(A_0) = y^*(A_-) = y^*(A_0)
\]

(18.5)

It turns out, these quantities will solve the submodular function minimization problem, as we now show.

The proof is nice since it uses the tools we’ve been recently developing.
Min-Norm Point and SFM

Theorem 18.4.1

Let \(y^* \), \(A_- \), and \(A_0 \) be as given. Then \(y^* \) is a maximizer of the l.h.s. of Eqn. (??). Moreover, \(A_- \) is the unique minimal minimizer of \(f \) and \(A_0 \) is the unique maximal minimizer of \(f \).

Proof.

- First note, since \(x^* \in B_f \), we have \(x^*(E) = f(E) \), meaning \(\text{sat}(x^*) = E \). Thus, we can consider any \(e \in E \) within \(\text{dep}(x^*, e) \).

- Consider any pair \((e, e')\) with \(e' \in \text{dep}(x^*, e) \) and \(e \in A_- \). Then \(x^*(e) < 0 \), and \(\exists \alpha > 0 \) s.t. \(x^* + \alpha 1_e - \alpha 1_{e'} \in P_f \).

- We have \(x^*(E) = f(E) \) and \(x^* \) is minimum in \(l_2 \) sense. We have \((x^* + \alpha 1_e - \alpha 1_{e'}) \in P_f \), and in fact

\[
(x^* + \alpha 1_e - \alpha 1_{e'})(E) = x^*(E) + \alpha - \alpha = f(E) \tag{18.1}
\]

so \(x^* + \alpha 1_e - \alpha 1_{e'} \in B_f \) also.
Duality: convex minimization of L.E. and min-norm alg.

Let f be a submodular function with $	ilde{f}$ its Lovász extension. Then the following two problems are duals (Bach-2013):

\[
\begin{align*}
\text{minimize} & \quad \tilde{f}(w) + \frac{1}{2} \|w\|_2^2 \\
\text{subject to} & \quad x \in B_f
\end{align*}
\]

(18.25)

maximize $-\|x\|_2^2$

(18.26a)

subject to $x \in B_f$

(18.26b)

where $B_f = P_f \cap \{x \in \mathbb{R}^V : x(V) = f(V)\}$ is the base polytope of submodular function f, and $\|x\|_2^2 = \sum_{e \in V} x(e)^2$ is squared 2-norm.

Equation (18.25) is related to proximal methods to minimize the Lovász extension (see Parikh&Boyd, “Proximal Algorithms” 2013).

Equation (18.26b) is solved by the minimum-norm point algorithm (Wolfe-1976, Fujishige-1984, Fujishige-2005, Fujishige-2011) is (as we will see) essentially an active-set procedure for quadratic programming, and uses Edmonds’s greedy algorithm to make it efficient.

Unknown worst-case running time, although in practice it usually performs quite well (see below).
Ex: 3D base B_f: permutahedron

- Consider submodular function $f : 2^V \rightarrow \mathbb{R}$ with $|V| = 4$, and for $X \subseteq V$, concave g,

 $$f(X) = g(|X|)$$

 $$|X| = \sum_{i=1}^{4-i+1}$$

- Then B_f is a 3D polytope, and in this particular case gives us a permutahedron with 24 distinct extreme points, on the right (from wikipedia).
We have a variant of Theorem 12.5.2, the min-max theorem, namely that:

\[
\min \left\{ f(X) \mid X \subseteq E \right\} = \max \left\{ x - (E) \mid x \in B \right\}
\]

(18.27)

where \(x - (e) = \min \left\{ x(e), 0 \right\} \) for \(e \in E \).

Proof.

\[
\min \left\{ f(X) \mid X \subseteq E \right\} = \min_{w \in [0,1]} E \tilde{f}(w) = \min_{w \in [0,1]} E \max_{x \in \mathcal{P}} f_w x = \min_{w \in [0,1]} E \max_{x \in B} f_w x = \max_{x \in B} \min_{w \in [0,1]} E x = \max_{x \in B} x - (E)
\]

(18.28)

(18.29)

(18.30)

(18.31)
We have a variant of Theorem 12.5.2, the min-max theorem, namely that:

\textbf{Theorem 18.4.1 (Edmonds-1970)}

$$\min \{ f(X) | X \subseteq E \} = \max \{ x^-(E) | x \in B_f \}$$ \hspace{1cm} (18.27)

where \(x^-(e) = \min \{x(e), 0\} \) for \(e \in E \).
Modified max-min theorem

- We have a variant of Theorem 12.5.2, the min-max theorem, namely that:

\[
\min \{ f(X) | X \subseteq E \} = \max \left\{ x^-(E) | x \in B_f \right\} \tag{18.27}
\]

where \(x^-(e) = \min \{ x(e), 0 \} \) for \(e \in E \).

Proof.

\[
\min \{ f(X) | X \subseteq E \} = \min_{w \in [0,1]^E} \tilde{f}(w) = \min_{w \in [0,1]^E} \max_{x \in P_f} w^\top x \tag{18.28}
\]

\[
= \min_{w \in [0,1]^E} \max_{x \in B_f} w^\top x \tag{18.29}
\]

\[
= \max_{x \in B_f} \min_{w \in [0,1]^E} w^\top x \tag{18.30}
\]

\[
= \max_{x \in B_f} x^-(E) \tag{18.31}
\]
The min/max switch follows from strong duality. I.e., consider \(g(w, x) = w^\top x \) and we have domains \(w \in [0, 1]^E \) and \(x \in B_f \). Then for any \((w, x) \in [0, 1]^E \times B_f\), we have

\[
\min_{w' \in [0,1]^E} g(w', x) \leq g(w, x) \leq \max_{x' \in B_f} g(w, x') \tag{18.32}
\]

which means that we have weak duality

\[
\max_{x \in B_f} \min_{w' \in [0,1]^E} g(w', x) \leq \min_{w \in [0,1]^E} \max_{x' \in B_f} g(w, x') \tag{18.33}
\]

but since \(g(w, x) \) is linear, we have strong duality, meaning

\[
\max_{x \in B_f} \min_{w' \in [0,1]^E} g(w', x) = \min_{w \in [0,1]^E} \max_{x' \in B_f} g(w, x') \tag{18.34}
\]
Recall that the greedy algorithm solves, for \(w \in \mathbb{R}^E_+ \)

\[
\max \{ w^\top x \mid x \in P_f \} = \max \{ w^\top x \mid x \in B_f \}
\]

(18.35)

since for all \(x \in P_f \), there exists \(y \geq x \) with \(y \in B_f \).
\[
\min \{ w^\top x : x \in B_f \}
\]

- Recall that the greedy algorithm solves, for \(w \in \mathbb{R}^E_+ \)
 \[
 \max \{ w^\top x | x \in P_f \} = \max \{ w^\top x | x \in B_f \}
 \]
 since for all \(x \in P_f \), there exists \(y \geq x \) with \(y \in B_f \).
- For arbitrary \(w \in \mathbb{R}^E \), greedy algorithm will also solve:
 \[
 \max \{ w^\top x | x \in B_f \}
 \]
\[
\min \{ w^\top x : x \in B_f \}
\]

- Recall that the greedy algorithm solves, for \(w \in \mathbb{R}^E_+ \)

\[
\max \{ w^\top x | x \in P_f \} = \max \{ w^\top x | x \in B_f \} \tag{18.35}
\]

since for all \(x \in P_f \), there exists \(y \geq x \) with \(y \in B_f \).

- For arbitrary \(w \in \mathbb{R}^E \), greedy algorithm will also solve:

\[
\max \{ w^\top x | x \in B_f \} \tag{18.36}
\]

- Also, since

\[
\min \{ w^\top x | x \in B_f \} = -\max \{ -w^\top x | x \in B_f \} \tag{18.37}
\]

the greedy algorithm using ordering \((e_1, e_2, \ldots, e_m)\) such that

\[
w(e_1) \leq w(e_2) \leq \cdots \leq w(e_m) \tag{18.38}
\]

will solve Equation (18.37).
\[
\max \{ w^T x \mid x \in B_f \} \quad \text{for arbitrary } w \in \mathbb{R}^E
\]

Let \(f(A) \) be arbitrary submodular function, and \(f(A) = f'(A) - m(A) \) where \(f' \) is polymatroidal, and \(w \in \mathbb{R}^E \).

\[
\max \{ w^T x \mid x \in B_f \} = \max \{ w^T x \mid x(A) \leq f(A) \forall A, x(E) = f(E) \}
\]

\[
= \max \{ w^T x \mid x(A) \leq f'(A) - m(A) \forall A, x(E) = f'(E) - m(E) \}
\]

\[
= \max \{ w^T x \mid x(A) + m(A) \leq f'(A) \forall A, x(E) + m(E) = f'(E) \}
\]

\[
= \max \{ w^T x + w^T m \mid x(A) + m(A) \leq f'(A) \forall A, x(E) + m(E) = f'(E) \} - w^T m
\]

\[
= \max \{ w^T y \mid y \in B_{f'} \} - w^T m
\]

\[
= w^T y^* - w^T m = w^T (y^* - m)
\]

where \(y = x + m \), so that \(x^* = y^* - m \).

So \(y^* \) uses greedy algorithm with positive orthant \(B_{f'} \). To show, we use Theorem 12.4.1 in Lecture 12, but we don’t require \(y \geq 0 \), and don’t stop when \(w \) goes negative to ensure \(y^* \in B_{f'} \). Then when we subtract off \(m \) from \(y^* \), we get solution to the original problem.
Notation

- Define $H(x)$ as the hyperplane that is orthogonal to the line from 0 to x, while also containing x, i.e.

$$H(x) \triangleq \left\{ y \in \mathbb{R}^V \mid x^\top y = \|x\|_2^2 \right\}$$ (18.39)

Any set $\left\{ y \in \mathbb{R}^V \mid x^\top y = c \right\}$ is orthogonal to the line from 0 to x. To also contain x, we need $\|x\|_2 \|x\|_2 \cos 0 = c$ giving $c = \|x\|_2^2$.

![Diagram showing hyperplane $H(x)$](image-url)
Notation

- Define $H(x)$ as the hyperplane that is orthogonal to the line from 0 to x, while also containing x, i.e.

$$H(x) \triangleq \left\{ y \in \mathbb{R}^V \mid x^\top y = \|x\|_2^2 \right\} \quad (18.39)$$

Any set $\{ y \in \mathbb{R}^V \mid x^\top y = c \}$ is orthogonal to the line from 0 to x. To also contain x, we need $\|x\|_2 \|x\|_2 \cos 0 = c$ giving $c = \|x\|_2^2$.

- Given a set of points $P = \{p_1, p_2, \ldots, p_k\}$ with $p_i \in \mathbb{R}^V$, let $\text{conv} \ P$ be the convex hull of P, i.e.,

$\text{conv} \ P \triangleq \left\{ \sum_{i=1}^k \lambda_i p_i : \sum_{i} \lambda_i = 1, \lambda_i \geq 0, i \in [k] \right\} \quad (18.40)$
Define $H(x)$ as the hyperplane that is orthogonal to the line from 0 to x, while also containing x, i.e.

$$H(x) \triangleq \left\{ y \in \mathbb{R}^V \mid x^\top y = \|x\|_2^2 \right\} \quad (18.39)$$

Any set $\{y \in \mathbb{R}^V \mid x^\top y = c\}$ is orthogonal to the line from 0 to x. To also contain x, we need $\|x\|_2 \|x\|_2 \cos 0 = c$ giving $c = \|x\|_2^2$.

Given a set of points $P = \{p_1, p_2, \ldots, p_k\}$ with $p_i \in \mathbb{R}^V$, let $\text{conv} P$ be the convex hull of P, i.e.,

$$\text{conv} P \triangleq \left\{ \sum_{i=1}^k \lambda_i p_i : \sum_{i} \lambda_i = 1, \lambda_i \geq 0, i \in [k] \right\} \quad (18.40)$$

and for $Q = \{q_1, q_2, \ldots, q_k\}$, with $q_i \in \mathbb{R}^V$, let $\text{aff} Q$ be the affine hull of Q, i.e.,

$$\text{aff} Q \triangleq \left\{ \sum_{i=1}^k \lambda_i q_i : \sum_{i=1}^k \lambda_i = 1 \right\} \quad (18.41)$$
The line between x and y: given two points $x, y \in \mathbb{R}^V$, let $[x, y] \triangleq \{ \lambda x + (1 - \lambda y) : \lambda \in [0, 1] \}$.
Notation

- **The line between** x and y: given two points $x, y \in \mathbb{R}^V$, let $[x, y] \triangleq \{ \lambda x + (1 - \lambda y) : \lambda \in [0, 1] \}$.

- **Note**, if we wish to minimize the 2-norm of a vector $\|x\|_2$, we can equivalently minimize its square $\|x\|_2^2 = \sum_i x_i^2$, and vice versa.
Wolfe-1976 developed an algorithm to compute the minimum norm point of a polytope, specified as a set of vertices.
Wolfe-1976 developed an algorithm to compute the minimum norm point of a polytope, specified as a set of vertices.

Fujishige-1984 “Submodular Systems and Related Topics” realized this algorithm can find the minimum norm point of B_f.
Fujishige-Wolfe Min-Norm Algorithm

- Wolfe-1976 developed an algorithm to compute the minimum norm point of a polytope, specified as a set of vertices.
- Fujishige-1984 “Submodular Systems and Related Topics” realized this algorithm can find the min. norm point of B_f.
- Seems to be (among) the fastest general purpose SFM algo.
Wolfe-1976 developed an algorithm to compute the minimum norm point of a polytope, specified as a set of vertices.

Fujishige-1984 “Submodular Systems and Related Topics” realized this algorithm can find the minimum norm point of B_f.

Seems to be (among) the fastest general purpose SFM algo.

Given set of points $P = \{p_1, \cdots, p_m\}$ where $p_i \in \mathbb{R}^n$: find the minimum norm point in convex hull of P:

$$\min_{x \in \text{conv } P} \|x\|_2$$ \hspace{1cm} (18.42)
Fujishige-Wolfe Min-Norm Algorithm

- Wolfe-1976 developed an algorithm to compute the minimum norm point of a polytope, specified as a set of vertices.
- Fujishige-1984 “Submodular Systems and Related Topics” realized this algorithm can find the the min. norm point of B_f.
- Seems to be (among) the fastest general purpose SFM algo.
- Given set of points $P = \{p_1, \cdots, p_m\}$ where $p_i \in \mathbb{R}^n$: find the minimum norm point in convex hull of P:

\[
\min_{x \in \text{conv } P} \|x\|_2
\]

(18.42)

- Wolfe’s algorithm is guaranteed terminating, and explicitly uses a representation of x as a convex combination of points in P
Wolfe-1976 developed an algorithm to compute the minimum norm point of a polytope, specified as a set of vertices.

Fujishige-1984 “Submodular Systems and Related Topics” realized this algorithm can find the minimum norm point of B_f.

Seems to be (among) the fastest general purpose SFM algo.

Given set of points $P = \{p_1, \cdots, p_m\}$ where $p_i \in \mathbb{R}^n$: find the minimum norm point in convex hull of P:

$$\min_{x \in \text{conv } P} \|x\|_2$$

Wolfe's algorithm is guaranteed terminating, and explicitly uses a representation of x as a convex combination of points in P.

Algorithm maintains a set of points $Q \subseteq P$, which is always assuredly affinely independent.
Fujishige-Wolfe Min-Norm Algorithm

- When Q are affinely independent, minimum norm point in the affine hull of Q can easily be found, as a closed form solution for $\min_{x \in \text{aff } Q} \|x\|_2$ is available (see below).
Fujishige-Wolfe Min-Norm Algorithm

- When Q are affinely independent, minimum norm point in the affine hull of Q can easily be found, as a closed form solution for $\min_{x \in \text{aff } Q} \|x\|_2$ is available (see below).
- Algorithm repeatedly produces min. norm point x^* for selected set Q.
Fujishige-Wolfe Min-Norm Algorithm

- When Q are affinely independent, minimum norm point in the affine hull of Q can easily be found, as a closed form solution for $\min_{x \in \text{aff } Q} \|x\|_2$ is available (see below).
- Algorithm repeatedly produces min. norm point x^* for selected set Q.
- If we find $w_i \geq 0, i = 1, \cdots, m$ for the minimum norm point, then x^* also belongs to $\text{conv } Q$ and also a minimum norm point over $\text{conv } Q$.

\[\text{conv } Q \subseteq \text{aff } Q \]
Fujishige-Wolfe Min-Norm Algorithm

- When Q are affinely independent, minimum norm point in the affine hull of Q can easily be found, as a closed form solution for $\min_{x \in \text{aff } Q} \|x\|_2$ is available (see below).
- Algorithm repeatedly produces min. norm point x^* for selected set Q.
- If we find $w_i \geq 0$, $i = 1, \ldots, m$ for the minimum norm point, then x^* also belongs to $\text{conv } Q$ and also a minimum norm point over $\text{conv } Q$.
- If $Q \subseteq P$ is suitably chosen, x^* may even be the minimum norm point over $\text{conv } P$ solving the original problem.
Lovász extension examples

Fujishige-Wolfe Min-Norm Algorithm

- When Q are affinely independent, minimum norm point in the affine hull of Q can easily be found, as a closed form solution for $\min_{x \in \text{aff } Q} \|x\|_2$ is available (see below).
- Algorithm repeatedly produces min. norm point x^* for selected set Q.
- If we find $w_i \geq 0, i = 1, \ldots, m$ for the minimum norm point, then x^* also belongs to $\text{conv } Q$ and also a minimum norm point over $\text{conv } Q$.
- If $Q \subseteq P$ is suitably chosen, x^* may even be the minimum norm point over $\text{conv } P$ solving the original problem.
- One of the most expensive parts of Wolfe’s algorithm is solving linear optimization problem over the polytope, doable by examining all the extreme points in the polytope.
Fujishige-Wolfe Min-Norm Algorithm

- When Q are affinely independent, minimum norm point in the affine hull of Q can easily be found, as a closed form solution for $\min_{x \in \text{aff } Q} \|x\|_2$ is available (see below).
- Algorithm repeatedly produces min. norm point x^* for selected set Q.
- If we find $w_i \geq 0, i = 1, \ldots, m$ for the minimum norm point, then x^* also belongs to $\text{conv } Q$ and also a minimum norm point over $\text{conv } Q$.
- If $Q \subseteq P$ is suitably chosen, x^* may even be the minimum norm point over $\text{conv } P$ solving the original problem.
- One of the most expensive parts of Wolfe’s algorithm is solving linear optimization problem over the polytope, doable by examining all the extreme points in the polytope.
- If number of extreme points is exponential, hard to do in general.
Fujishige-Wolfe Min-Norm Algorithm

- When Q are affinely independent, minimum norm point in the affine hull of Q can easily be found, as a closed form solution for $\min_{x \in \text{aff } Q} \|x\|_2$ is available (see below).
- Algorithm repeatedly produces min. norm point x^* for selected set Q.
- If we find $w_i \geq 0, i = 1, \ldots, m$ for the minimum norm point, then x^* also belongs to $\text{conv } Q$ and also a minimum norm point over $\text{conv } Q$.
- If $Q \subseteq P$ is suitably chosen, x^* may even be the minimum norm point over $\text{conv } P$ solving the original problem.
- One of the most expensive parts of Wolfe’s algorithm is solving linear optimization problem over the polytope, doable by examining all the extreme points in the polytope.
- If number of extreme points is exponential, hard to do in general.
- Number of extreme points of submodular base polytope is exponentially large, but linear optimization over the base polytope B_f doable $O(n \log n)$ time via Edmonds’s greedy algorithm.
Pseudocode of Fujishige-Wolfe Min-Norm (MN) algorithm

Input: \(P = \{p_1, \cdots, p_m\}, p_i \in \mathbb{R}^n, i = 1, \cdots, m. \)

Output: \(x^* \): the minimum-norm-point in \(\text{conv} \ P \).

1. \(x^* \leftarrow p_i^* \) where \(p_i^* \in \arg\min_{p \in P} \|p\|_2 \)
 /* or choose it arbitrarily */
2. \(Q \leftarrow \{x^*\}; \)
3. **while** 1 do
 /* major loop */
 4. **if** \(x^* = 0 \) or \(H(x^*) \) separates \(P \) from origin **then**
 return : \(x^* \)
 5. **else**
 6. Choose \(\hat{x} \in P \) on the near (closer to 0) side of \(H(x^*) \);
 7. \(Q = Q \cup \{\hat{x}\}; \)
 8. **while** 1 do
 /* minor loop */
 9. \(x_0 \leftarrow \min_{x \in \text{aff} \ Q} \|x\|_2; \)
 10. **if** \(x_0 \in \text{conv} \ Q \) **then**
 11. \(x^* \leftarrow x_0; \)
 12. **break**;
 13. **else**
 14. \(y \leftarrow \min_{x \in \text{conv} \ Q \cap [x^*, x_0]} \|x - x_0\|_2; \)
 Delete from \(Q \) points not on the face of \(\text{conv} \ Q \) where \(y \) lies;
 15. \(x^* \leftarrow y; \)
It is advised that for the next set of slides, you have a print out of the previous MN algorithm available on display/paper somewhere.
It is advised that for the next set of slides, you have a print out of the previous MN algorithm available on display/paper somewhere.

Algorithm maintains an invariant, which is that

\[x^* \in \text{conv } Q \subseteq \text{conv } P \] \hspace{1cm} (18.43)

This is true after each place it is possibly assigned (Line 1, Line 11, and Line 16):

1. True after Line 1 since \(Q = \{ x^* \} \),
2. True after Line 11 since \(x_0 \in \text{conv } Q \),
3. and true after Line 16 since \(y \in \text{conv } Q \) even after deleting points.
It is advised that for the next set of slides, you have a print out of the previous MN algorithm available on display/paper somewhere.

Algorithm maintains an invariant, which is that

\[x^* \in \text{conv } Q \subseteq \text{conv } P \quad (18.43) \]

This is true after each place it is possibly assigned (Line 1, Line 11, and Line 16):

1. True after Line 1 since \(Q = \{ x^* \} \),
2. True after Line 11 since \(x_0 \in \text{conv } Q \),
3. and true after Line 16 since \(y \in \text{conv } Q \) even after deleting points.

Note also for any \(x^* \in \text{conv } Q \subseteq \text{conv } P \), we have

\[\min_{x \in \text{aff } Q} \|x\|_2 \leq \min_{x \in \text{conv } Q} \|x\|_2 \leq \|x^*\|_2 \quad (18.44) \]
It is advised that for the next set of slides, you have a print out of the previous MN algorithm available on display/paper somewhere.

Algorithm maintains an invariant, which is that

\[x^* \in \text{conv } Q \subseteq \text{conv } P \tag{18.43} \]

This is true after each place it is possibly assigned (Line 1, Line 11, and Line 16):

1. True after Line 1 since \(Q = \{ x^* \} \),
2. True after Line 11 since \(x_0 \in \text{conv } Q \),
3. and true after Line 16 since \(y \in \text{conv } Q \) even after deleting points.

Note also for any \(x^* \in \text{conv } Q \subseteq \text{conv } P \), we have

\[\min_{x \in \text{aff } Q} \| x \|_2 \leq \min_{x \in \text{conv } Q} \| x \|_2 \leq \| x^* \|_2 \tag{18.44} \]

There are six places that might be seemingly tricky or expensive: Line 4, Line 6, Line 9, Line 10, Line 14, and Line 15.
Lovász extension examples

Min-Norm Point Algorithm

Fujishige-Wolfe Min-Norm algorithm: Geometric Example

- It is advised that for the next set of slides, you have a print out of the previous MN algorithm available on display/paper somewhere.
- Algorithm maintains an invariant, which is that

\[x^* \in \text{conv } Q \subseteq \text{conv } P \] \hspace{1cm} (18.43)

This is true after each place it is possibly assigned (Line 1, Line 11, and Line 16):

1. True after Line 1 since \(Q = \{ x^* \} \),
2. True after Line 11 since \(x_0 \in \text{conv } Q \),
3. and true after Line 16 since \(y \in \text{conv } Q \) even after deleting points.

- Note also for any \(x^* \in \text{conv } Q \subseteq \text{conv } P \), we have

\[
\min_{x \in \text{aff } Q} \| x \|_2 \leq \min_{x \in \text{conv } Q} \| x \|_2 \leq \| x^* \|_2
\] \hspace{1cm} (18.44)

- There are six places that might be seemingly tricky or expensive: Line 4, Line 6, Line 9, Line 10, Line 14, and Line 15.
- We will consider each in turn, but first we do a geometric example.
Fujishige-Wolfe Min-Norm algorithm: Geometric Example

Polytope, and circles concentric at 0.
The initial polytope consisting of the convex hull of three points \(p_1, p_2, p_3 \), and the origin 0.
p_1 is the extreme point closest to 0 and so we choose it first, although we can choose any arbitrary extreme point as the initial point. We set $x^* \leftarrow p_1$ in Line 1, and $Q \leftarrow \{p_1\}$ in Line 2. $H(x^*) = H(p_1)$ (green dashed line) is not a supporting hyperplane of $\text{conv}(P)$ in Line 4, so we move on to the else condition in Line 5.
We need to add some extreme point \hat{x} on the “near” side of $H(p_1)$ in Line 6, we choose $\hat{x} = p_2$. In Line 7, we set $Q \leftarrow Q \cup \{p_2\}$, so $Q = \{p_1, p_2\}$.
$x_0 = R$ is the min-norm point in $\text{aff} \{p_1, p_2\}$ computed in Line 9.
$x_0 = R$ is the min-norm point in $\text{aff}\{p_1, p_2\}$ computed in Line 9. Also, with $Q = \{p_1, p_2\}$, since $R \in \text{conv } Q$, we set $x^* \leftarrow x_0 = R$ in Line 11. Note, after Line 11, we still have $x^* \in P$ and $\|x^*\|_2 = \|x^*_{\text{new}}\|_2 < \|x^*_{\text{old}}\|_2$ strictly.
 Lovász extension examples

Fujishige-Wolfe Min-Norm algorithm: Geometric Example

\[R = x_0 = x^* \]. We consider next \(H(R) = H(x^*) \) in Line 4. \(H(x^*) \) is not a supporting hyperplane of \(\text{conv} \ P \). So we choose \(p_3 \) on the "near" side of \(H(x^*) \) in Line 6. Add \(Q \leftarrow Q \cup \{p_3\} \) in Line 7. Now \(Q = P = \{p_1, p_2, p_3\} \).
Lovász extension examples

Min-Norm Point Algorithm

Fujishige-Wolfe Min-Norm algorithm: Geometric Example

\[R = x_0 = x^*. \] We consider next \(H(R) = H(x^*) \) in Line 4. \(H(x^*) \) is not a supporting hyperplane of \(\text{conv} \ P \). So we choose \(p_3 \) on the “near” side of \(H(x^*) \) in Line 6. Add \(Q \leftarrow Q \cup \{p_3\} \) in Line 7. Now \(Q = P = \{p_1, p_2, p_3\} \). The origin \(x_0 = 0 \) is the min-norm point in \(\text{aff} \ Q \) (Line 9), and it is not in the interior of \(\text{conv} \ Q \) (condition in Line 10 is false).
Lovász extension examples

Fujishige-Wolfe Min-Norm algorithm: Geometric Example

\[Q = P = \{ p_1, p_2, p_3 \} \]. Line 14: \(S = y = \min_{x \in \text{conv } Q \cap [x^*, x_0]} \| x - x_0 \|_2 \)
where \(x_0 \) is 0 and \(x^* \) is \(R \) here. Thus, \(y \) lies on the boundary of \(\text{conv } Q \).
Note, \(\| y \|_2 < \| x^* \|_2 \) since \(x^* \in \text{conv } Q \), \(\| x_0 \|_2 < \| x^* \|_2 \).
Lovász extension examples

Min-Norm Point Algorithm

Fujishige-Wolfe Min-Norm algorithm: Geometric Example

\[Q = P = \{p_1, p_2, p_3\}. \text{ Line 14: } S = y = \min_{x \in \text{conv } Q \cap [x^*, x_0]} \|x - x_0\|_2 \]

where \(x_0 \) is 0 and \(x^* \) is \(R \) here. Thus, \(y \) lies on the boundary of \(\text{conv } Q \).

Note, \(\|y\|_2 < \|x^*\|_2 \) since \(x^* \in \text{conv } Q \), \(\|x_0\|_2 < \|x^*\|_2 \). Line 15: Delete \(p_1 \) from \(Q \) since it is not on the face where \(S \) lies. \(Q = \{p_2, p_3\} \) after Line 15. Note, we still have \(y = S \in \text{conv } Q \) for the updated \(Q \).
Lovász extension examples

Fujishige-Wolfe Min-Norm algorithm: Geometric Example

$Q = P = \{p_1, p_2, p_3\}$. Line 14: $S = y = \min_{x \in \text{conv } Q \cap [x^*, x_0]} \|x - x_0\|_2$ where x_0 is 0 and x^* is R here. Thus, y lies on the boundary of $\text{conv } Q$. Note, $\|y\|_2 < \|x^*\|_2$ since $x^* \in \text{conv } Q$, $\|x_0\|_2 < \|x^*\|_2$. Line 15: Delete p_1 from Q since it is not on the face where S lies. $Q = \{p_2, p_3\}$ after Line 15. Note, we still have $y = S \in \text{conv } Q$ for the updated Q. Line 16: $x^* \leftarrow y$, hence we again have $\|x^*\|_2 = \|x^*_\text{new}\|_2 < \|x^*_\text{old}\|_2$ strictly.
Lovász extension examples

Min-Norm Point Algorithm

Fujishige-Wolfe Min-Norm algorithm: Geometric Example

\[Q = \{ p_2, p_3 \}, \text{ and so } x_0 = T \text{ computed in Line 9 is the min-norm point in } \text{aff } Q. \text{ We also have } x_0 \in \text{conv } Q \text{ in Line 10 so we assign } x^* \leftarrow x_0 \text{ in Line 11 and break.} \]
H(T) separates P from the origin in Line 4, and therefore is a supporting hyperplane, and therefore x^* is the min-norm point in $\text{conv} P$, so we return with x^*.
Condition for Min-Norm Point

Theorem 18.4.2

With $P = \{p_1, p_2, \ldots, p_m\}$, $x^* \in \text{conv } P$ *is the minimum norm point in* $\text{conv } P$ *iff*

$$p_i^T x^* \geq \|x^*\|^2_2 \quad \forall i = 1, \ldots, m. \quad (18.45)$$

Proof.

- Assume x^* is the min-norm point, let $y \in \text{conv } P$, and $0 \leq \theta \leq 1$.

<table>
<thead>
<tr>
<th>Theorem 18.4.2</th>
<th>Condition for Min-Norm Point</th>
</tr>
</thead>
<tbody>
<tr>
<td>With $P = {p_1, p_2, \ldots, p_m}$, $x^* \in \text{conv } P$ is the minimum norm point in $\text{conv } P$ iff</td>
<td>$p_i^T x^* \geq |x^*|^2_2 \quad \forall i = 1, \ldots, m. \quad (18.45)$</td>
</tr>
<tr>
<td>Proof.</td>
<td>Assume x^* is the min-norm point, let $y \in \text{conv } P$, and $0 \leq \theta \leq 1$.</td>
</tr>
</tbody>
</table>

Prof. Jeff Bilmes
EE596b/Spring 2014/Submodularity - Lecture 18 - June 2nd, 2014
F44/57 (pg.115/172)
Condition for Min-Norm Point

Theorem 18.4.2

With $P = \{p_1, p_2, \ldots, p_m\}$, $x^* \in \text{conv } P$ is the minimum norm point in $\text{conv } P$ iff

$$p_i^T x^* \geq \|x^*\|_2^2 \quad \forall i = 1, \ldots, m. \tag{18.45}$$

Proof.

- Assume x^* is the min-norm point, let $y \in \text{conv } P$, and $0 \leq \theta \leq 1$.
- Then $z \triangleq x^* + \theta(y - x^*) = (1 - \theta)x^* + \theta y \in \text{conv } P$
Condition for Min-Norm Point

Theorem 18.4.2

With \(P = \{p_1, p_2, \ldots, p_m\} \), \(x^* \in \text{conv} \, P \) *is the minimum norm point in* \(\text{conv} \, P \) *iff*

\[
p_i^\top x^* \geq \|x^*\|_2^2 \quad \forall i = 1, \cdots, m.
\]

(18.45)

Proof.

- Assume \(x^* \) is the min-norm point, let \(y \in \text{conv} \, P \), and \(0 \leq \theta \leq 1 \).
- Then \(z \triangleq x^* + \theta (y - x^*) = (1 - \theta)x^* + \theta y \in \text{conv} \, P \)

\[
\|z\|_2^2 = \|x^* + \theta (y - x^*)\|_2^2 = \|x^*\|_2^2 + 2\theta (x^\top y - x^\top x^*) + \theta^2 \|y - x^*\|_2^2
\]
Condition for Min-Norm Point

Theorem 18.4.2

With $P = \{p_1, p_2, \ldots, p_m\}$, $x^* \in \text{conv } P$ is the minimum norm point in $\text{conv } P$ iff

$$p_i^T x^* \geq \|x^*\|_2^2 \quad \forall i = 1, \cdots, m.$$ \hspace{1cm} (18.45)

Proof.

- Assume x^* is the min-norm point, let $y \in \text{conv } P$, and $0 \leq \theta \leq 1$.
- Then $z \triangleq x^* + \theta(y - x^*) = (1 - \theta)x^* + \theta y \in \text{conv } P$.
- $\|z\|_2^2 = \|x^* + \theta(y - x^*)\|_2^2 = \|x^*\|_2^2 + 2\theta(x^* y - x^* x^*) + \theta^2 \|y - x^*\|_2^2$.
- It is possible for $\|z\|_2^2 < \|x^*\|_2^2$ for small θ, unless $x^* y \geq x^* x^*$ for all $y \in \text{conv } P \Rightarrow$ Equation (18.45).
Condition for Min-Norm Point

Theorem 18.4.2

With \(P = \{p_1, p_2, \ldots, p_m\} \), \(x^\star \in \operatorname{conv} P \) is the minimum norm point in \(\operatorname{conv} P \) iff

\[
p_i^T x^\star \geq \|x^\star\|_2^2 \quad \forall i = 1, \ldots, m.
\] (18.45)

Proof.

- Assume \(x^\star \) is the min-norm point, let \(y \in \operatorname{conv} P \), and \(0 \leq \theta \leq 1 \).
- Then \(z \triangleq x^\star + \theta(y - x^\star) = (1 - \theta)x^\star + \theta y \in \operatorname{conv} P \)
- \[\|z\|_2^2 = \|x^\star + \theta(y - x^\star)\|_2^2 = \|x^\star\|_2^2 + 2\theta(x^\star^T y - x^\star^T x^\star) + \theta^2 \|y - x^\star\|_2^2\]
- It is possible for \(\|z\|_2^2 < \|x^\star\|_2^2 \) for small \(\theta \), unless \(x^\star^T y \geq x^\star^T x^\star \) for all \(y \in \operatorname{conv} P \Rightarrow \) Equation (18.45).

- Conversely, given Eq (18.45), and given that \(z = \sum_i \lambda_i p_i \in \operatorname{conv} P \),

\[
z^T x^\star = \sum_i \lambda_i p_i^T x^\star \geq \sum_i \lambda_i x^\star^T x^\star = x^\star^T x^\star
\] (18.46)

implying that \(\|z\|_2^2 > \|x^\star\|_2^2 \).
The set \(Q \) is always affinely independent.

Lemma 18.4.3

The set \(Q \) in the MN Algorithm is always affinely independent.
The set Q is always affinely independent

Lemma 18.4.3

The set Q in the MN Algorithm is always affinely independent.

Proof.
The set Q is always affinely independent

Lemma 18.4.3
The set Q in the MN Algorithm is always affinely independent.

Proof.
- Q is of course affinely independent when there is at most one point in it (e.g., after Line 2).
The set Q is always affinely independent

Lemma 18.4.3

The set Q in the MN Algorithm is always affinely independent.

Proof.

- Q is of course affinely independent when there is at most one point in it (e.g., after Line 2).
- After the initialization, it changes only by deletion of single point or adding a single point. Deletion does not change the independence.
The set Q is always affinely independent

Lemma 18.4.3

The set Q in the MN Algorithm is always affinely independent.

Proof.

- Q is of course affinely independent when there is at most one point in it (e.g., after Line 2).
- After the initialization, it changes only by deletion of single point or adding a single point. Deletion does not change the independence.
- Before adding \hat{x} at Line 7, we know x^* is the minimum norm point in $\text{aff } Q$ (since we break only at Line 11).
The set Q is always affinely independent

Lemma 18.4.3

The set Q in the MN Algorithm is always affinely independent.

Proof.

- Q is of course affinely independent when there is at most one point in it (e.g., after Line 2).

- After the initialization, it changes only by deletion of single point or adding a single point. Deletion does not change the independence.

- Before adding \hat{x} at Line 7, we know x^* is the minimum norm point in $\text{aff } Q$ (since we break only at Line 11).

- Therefore, x^* is normal to $\text{aff } Q$, which implies $\text{aff } Q \subseteq H(x^*)$.

The set Q is always affinely independent

Lemma 18.4.3

The set Q in the MN Algorithm is always affinely independent.

Proof.

- Q is of course affinely independent when there is at most one point in it (e.g., after Line 2).

- After the initialization, it changes only by deletion of single point or adding a single point. Deletion does not change the independence.

- Before adding \hat{x} at Line 7, we know x^* is the minimum norm point in $\text{aff } Q$ (since we break only at Line 11).

- Therefore, x^* is normal to $\text{aff } Q$, which implies $\text{aff } Q \subseteq H(x^*)$.

- Since $\hat{x} \notin H(x^*)$ chosen at Line 6, we have $\hat{x} \notin \text{aff } Q$.

\blacksquare
The set Q is always affinely independent

Lemma 18.4.3

The set Q in the MN Algorithm is always affinely independent.

Proof.

- Q is of course affinely independent when there is at most one point in it (e.g., after Line 2).
- After the initialization, it changes only by deletion of single point or adding a single point. Deletion does not change the independence.
- Before adding \hat{x} at Line 7, we know x^* is the minimum norm point in $\text{aff } Q$ (since we break only at Line 11).
- Therefore, x^* is normal to $\text{aff } Q$, which implies $\text{aff } Q \subseteq H(x^*)$.
- Since $\hat{x} \notin H(x^*)$ chosen at Line 6, we have $\hat{x} \notin \text{aff } Q$.
- Hence, update $Q \cup \{\hat{x}\}$ at Line 7 is affinely independent as long as Q is.
The set Q is always affinely independent

Lemma 18.4.3

The set Q in the MN Algorithm is always affinely independent.

Proof.

- Q is of course affinely independent when there is at most one point in it (e.g., after Line 2).
- After the initialization, it changes only by deletion of single point or adding a single point. Deletion does not change the independence.
- Before adding \hat{x} at Line 7, we know x^* is the minimum norm point in $\text{aff } Q$ (since we break only at Line 11).
- Therefore, x^* is normal to $\text{aff } Q$, which implies $\text{aff } Q \subseteq H(x^*)$.
- Since $\hat{x} \notin H(x^*)$ chosen at Line 6, we have $\hat{x} \notin \text{aff } Q$.
- \therefore update $Q \cup \{\hat{x}\}$ at Line 7 is affinely independent as long as Q is.

Thus, by Lemma 18.4.3, we have for any $x \in \text{aff } Q$ such that $x = \sum_i w_i q_i$ with $\sum_i w_i = 1$, the weights w_i are uniquely determined.
Minimum Norm in an affine set

Line 9 of the algorithm requires

\[x_0 \leftarrow \min_{x \in \text{aff } Q} \| x \|_2. \]
Minimum Norm in an affine set

- Line 9 of the algorithm requires $x_0 \leftarrow \min_{x \in \text{aff } Q} \|x\|_2$.
- When Q is affinely independent, this is relatively easy.
Minimum Norm in an affine set

- Line 9 of the algorithm requires $x_0 \leftarrow \min_{x \in \text{aff } Q} \|x\|_2$.
- When Q is affinely independent, this is relatively easy.
- Let Q also represent the $n \times k$ matrix with points as columns $q \in Q$.
 We get the following, solvable with matrix inversion/linear solver:

 \[
 \begin{align*}
 \text{minimize} & \quad \|x\|_2^2 = w^T Q^T Q w \\
 \text{subject to} & \quad 1^T w = 1
 \end{align*}
 \]

 (18.47)

 (18.48)
Minimum Norm in an affine set

- Line 9 of the algorithm requires $x_0 \leftarrow \min_{x \in \text{aff } Q} \|x\|_2$.
- When Q is affinely independent, this is relatively easy.
- Let Q also represent the $n \times k$ matrix with points as columns $q \in Q$.

We get the following, solvable with matrix inversion/linear solver:

\[
\begin{align*}
\text{minimize} & \quad \|x\|_2^2 = w^T Q^T Q w \\
\text{subject to} & \quad 1^T w = 1
\end{align*}
\]

(18.47) (18.48)

- Note, this also solves Line 10, since feasibility requires $\sum_i w_i = 1$, we need only check $w \geq 0$ to ensure $x_0 = \sum_i w_i q_i \in \text{conv } Q$.

Minimum Norm in an affine set

- Line 9 of the algorithm requires $x_0 \leftarrow \min_{x \in \text{aff } Q} \|x\|_2$.
- When Q is affinely independent, this is relatively easy.
- Let Q also represent the $n \times k$ matrix with points as columns $q \in Q$.

We get the following, solvable with matrix inversion/linear solver:

$$\begin{align*}
\text{minimize} & \quad \|x\|_2^2 = w^T Q^T Q w \\
\text{subject to} & \quad 1^T w = 1
\end{align*}$$

(18.47) (18.48)

Note, this also solves Line 10, since feasibility requires $\sum_i w_i = 1$, we need only check $w \geq 0$ to ensure $x_0 = \sum_i w_i q_i \in \text{conv } Q$.

In fact, a feature of the algorithm (in Wolfe’s 1976 paper) is that we keep the convex coefficients $\{w_i\}$ where $x^* = \sum_i \lambda_i p_i$ of x^* and from this vector. We also keep v such that $x_0 = \sum_i v_i q_i$ for points $q_i \in Q$, from Line 9.

Given w and v, we can also easily solve Lines 14 and 15 (see “Step 3” on page 133 of Wolfe-1976, which also defines numerical tolerances).
Minimum Norm in an affine set

Line 9 of the algorithm requires $x_0 \leftarrow \min_{x \in \text{aff } Q} \|x\|_2$.

When Q is affinely independent, this is relatively easy.

Let Q also represent the $n \times k$ matrix with points as columns $q \in Q$.

We get the following, solvable with matrix inversion/linear solver:

\[
\begin{align*}
\text{minimize} & \quad \|x\|_2^2 = w^T Q^T Q w \\
\text{subject to} & \quad 1^T w = 1
\end{align*}
\]
(18.47)

Note, this also solves Line 10, since feasibility requires $\sum_i w_i = 1$, we need only check $w \geq 0$ to ensure $x_0 = \sum_i w_i q_i \in \text{conv } Q$.

In fact, a feature of the algorithm (in Wolfe’s 1976 paper) is that we keep the convex coefficients $\{w_i\}_i$ where $x^* = \sum_i \lambda_i p_i$ of x^* and from this vector. We also keep v such that $x_0 = \sum_i v_i q_i$ for points $q_i \in Q$, from Line 9.

Given w and v, we can also easily solve Lines 14 and 15 (see “Step 3” on page 133 of Wolfe-1976, which also defines numerical tolerances).

We have yet to see how to efficiently solve Lines 4 and 6, however.
MN Algorithm finds the MN point in finite time.

Theorem 18.4.4

The MN Algorithm finds the minimum norm point in $\text{conv} \ P$ after a finite number of iterations of the major loop.

Proof.

- In minor loop, we always have $x^* \in \text{conv} \ Q$, since whenever Q is modified, x^* is updated as well (Line 16) such that the updated x^* remains in new $\text{conv} \ Q$.

...
Theorem 18.4.4

The MN Algorithm finds the minimum norm point in $\text{conv } P$ after a finite number of iterations of the major loop.

Proof.

- In minor loop, we always have $x^* \in \text{conv } Q$, since whenever Q is modified, x^* is updated as well (Line 16) such that the updated x^* remains in new $\text{conv } Q$.

- Hence, every time x^* is updated (in minor loop), its norm never increases i.e., before Line 8, $\|x_0\|_2 \leq \|x^*\|_2$ since $x^* \in \text{aff } Q$ and $x_0 = \min_{x \in \text{aff } Q} \|x\|_2$.

...
MN Algorithm finds the MN point in finite time.

Theorem 18.4.4

The MN Algorithm finds the minimum norm point in $\text{conv } P$ after a finite number of iterations of the major loop.

Proof.

- In minor loop, we always have $x^* \in \text{conv } Q$, since whenever Q is modified, x^* is updated as well (Line 16) such that the updated x^* remains in new $\text{conv } Q$.

- Hence, every time x^* is updated (in minor loop), its norm never increases i.e., before Line 8, $\|x_0\|_2 \leq \|x^*\|_2$ since $x^* \in \text{aff } Q$ and $x_0 = \min_{x \in \text{aff } Q} \|x\|_2$. Similarly, before Line 16, $\|y\|_2 \leq \|x^*\|_2$, since invariant $x^* \in \text{conv } Q$ but while $x_0 \in \text{aff } Q$, we have $x_0 \notin \text{conv } Q$, and $\|x_0\|_2 < \|x^*\|_2$.

...
MN Algorithm finds the MN point in finite time.

... proof of Theorem 18.4.4 continued.

- Moreover, there can be no more iterations within a minor loop than the dimension of $\text{conv } Q$ for the initial Q given to the minor loop initially at Line 8 (dimension of $\text{conv } Q$ is $|Q| - 1$ since Q is affinely independent).
MN Algorithm finds the MN point in finite time.

... proof of Theorem 18.4.4 continued.

Moreover, there can be no more iterations within a minor loop than the dimension of $\text{conv } Q$ for the initial Q given to the minor loop initially at Line 8 (dimension of $\text{conv } Q$ is $|Q| - 1$ since Q is affinely independent).

Each iteration of the minor loop removes at least one point from Q in Line 15.
MN Algorithm finds the MN point in finite time.

... proof of Theorem 18.4.4 continued.

- Moreover, there can be no more iterations within a minor loop than the dimension of $\text{conv} \ Q$ for the initial Q given to the minor loop initially at Line 8 (dimension of $\text{conv} \ Q$ is $|Q| - 1$ since Q is affinely independent).
- Each iteration of the minor loop removes at least one point from Q in Line 15.
- When Q reduces to a singleton, the minor loop always terminates.
MN Algorithm finds the MN point in finite time.

... proof of Theorem 18.4.4 continued.

Moreover, there can be no more iterations within a minor loop than the dimension of $\text{conv } Q$ for the initial Q given to the minor loop initially at Line 8 (dimension of $\text{conv } Q$ is $|Q| - 1$ since Q is affinely independent).

Each iteration of the minor loop removes at least one point from Q in Line 15.

When Q reduces to a singleton, the minor loop always terminates.

Thus, the minor loop terminates in finite number of iterations, at most dimension of Q.

...
MN Algorithm finds the MN point in finite time.

... proof of Theorem 18.4.4 continued.

- Moreover, there can be no more iterations within a minor loop than the dimension of $\text{conv } Q$ for the initial Q given to the minor loop initially at Line 8 (dimension of $\text{conv } Q$ is $|Q| - 1$ since Q is affinely independent).
- Each iteration of the minor loop removes at least one point from Q in Line 15.
- When Q reduces to a singleton, the minor loop always terminates.
- Thus, the minor loop terminates in finite number of iterations, at most dimension of Q.
- In fact, total number of iterations of minor loop in entire algorithm is at most number of points in P since we never add back in points to Q that have been removed.

...
MN Algorithm finds the MN point in finite time.

... proof of Theorem 18.4.4 continued.

- Each time Q is augmented with \hat{x} at Line 7, followed by updating x^* with x_0 at Line 11, (i.e., when the minor loop returns with only one iteration), $\|x^*\|_2$ strictly decreases from what it was before.
MN Algorithm finds the MN point in finite time.

... proof of Theorem 18.4.4 continued.

- Each time Q is augmented with \hat{x} at Line 7, followed by updating x^* with x_0 at Line 11, (i.e., when the minor loop returns with only one iteration), $\|x^*\|_2$ strictly decreases from what it was before.

- To see this, consider $x^* + \theta(\hat{x} - x^*)$ where $0 \leq \theta \leq 1$. Since both $\hat{x}, x^* \in \text{conv } Q$, we have $x^* + \theta(\hat{x} - x^*) \in \text{conv } Q$.
proof of Theorem 18.4.4 continued.

- Each time Q is augmented with \hat{x} at Line 7, followed by updating x^* with x_0 at Line 11, (i.e., when the minor loop returns with only one iteration), $\|x^*\|_2$ strictly decreases from what it was before.
- To see this, consider $x^* + \theta(\hat{x} - x^*)$ where $0 \leq \theta \leq 1$. Since both $\hat{x}, x^* \in \text{conv} \ Q$, we have $x^* + \theta(\hat{x} - x^*) \in \text{conv} \ Q$.
- Therefore, we have $\|x^* + \theta(\hat{x} - x^*)\|_2 \geq \|x_0\|_2$, which implies

$$\|x^* + \theta(\hat{x} - x^*)\|_2^2 = \|x^*\|_2^2 + 2\theta (x^*)^\top \hat{x} - \|x^*\|_2^2 + \theta^2 \|\hat{x} - x^*\|_2^2 \geq \|x_0\|_2^2 \quad (18.49)$$

\hat{x} is on the same side of $H(x^*)$ as the origin, i.e. $(x^*)^\top \hat{x} < \|x^*\|_2^2$.

[QED]
MN Algorithm finds the MN point in finite time.

... proof of Theorem 18.4.4 continued.

Therefore, for sufficiently small θ, specifically for

$$\theta < \frac{2 \left(\|x^*\|^2_2 - (x^*)^\top \hat{x} \right)}{\|\hat{x} - x^*\|^2_2}$$

we have that $\|x^*\|^2_2 > \|x_0\|^2_2$.

(18.50)
MN Algorithm finds the MN point in finite time.

... proof of Theorem 18.4.4 continued.

- Therefore, for sufficiently small θ, specifically for

$$\theta < \frac{2 \left(\|x^*\|_2^2 - (x^*)^\top \hat{x} \right)}{\|\hat{x} - x^*\|_2^2} \quad (18.50)$$

we have that $\|x^*\|_2^2 > \|x_0\|_2^2$.

- For a similar reason, we have $\|x^*\|_2$ strictly decreases each time Q is updated at Line 7 and followed by updating x^* with y at Line 16.
MN Algorithm finds the MN point in finite time.

...proof of Theorem 18.4.4 continued.

- Therefore, for sufficiently small θ, specifically for

$$\theta < \frac{2 \left(\|x^*\|_2^2 - (x^*)^\top \hat{x} \right)}{\|\hat{x} - x^*\|_2^2}$$

(18.50)

we have that $\|x^*\|_2^2 > \|x_0\|_2^2$.

- For a similar reason, we have $\|x^*\|_2$ strictly decreases each time Q is updated at Line 7 and followed by updating x^* with y at Line 16.

- Therefore, in each iteration of major loop, $\|x^*\|_2$ strictly decreases, and the MN Algorithm must terminate and it can only do so when the optimal is found.
Line: 6: Finding $\hat{x} \in P$ on the near side of $H(x^*)$

- The “near” side means the side that contains the origin.
Line: 6: Finding $\hat{x} \in P$ on the near side of $H(x^*)$

- The “near” side means the side that contains the origin.
- Ideally, find \hat{x} such that the reduction of $\|x^*\|_2$ is maximized to reduce number of major iterations.

From Eqn. 18.49, reduction on norm is lower-bounded:

$$\Delta = \|x^*\|_2^2 - \|x_0\|_2^2 \geq 2\theta (\|x^*\|_2^2 - (x^*)^\top \hat{x}) - \theta^2 \|\hat{x} - x^*\|_2^2 \equiv \Delta$$

When $0 \leq \theta < 2(\|x^*\|_2^2 - (x^*)^\top \hat{x})$, we can get the maximal value of the lower bound, over θ, as follows:

$$\max_{0 \leq \theta < 2(\|x^*\|_2^2 - (x^*)^\top \hat{x})} \|\hat{x} - x^*\|_2^2$$

$$\Delta = (\|x^*\|_2^2 - (x^*)^\top \hat{x})^2$$

$$(18.52)$$
Line: 6: Finding $\hat{x} \in P$ on the near side of $H(x^*)$

- The “near” side means the side that contains the origin.
- Ideally, find \hat{x} such that the reduction of $\|x^*\|_2$ is maximized to reduce number of major iterations.
- From Eqn. 18.49, reduction on norm is lower-bounded:

$$\Delta = \|x^*\|_2^2 - \|x_0\|_2^2 \geq 2\theta \left(\|x^*\|_2^2 - (x^*)^\top \hat{x} \right) - \theta^2 \|\hat{x} - x^*\|_2^2 \triangleq \Delta$$

(18.51)
Line: 6: Finding $\hat{x} \in P$ on the near side of $H(x^*)$

- The “near” side means the side that contains the origin.
- Ideally, find \hat{x} such that the reduction of $\|x^*\|_2$ is maximized to reduce the number of major iterations.
- From Eqn. 18.49, reduction on norm is lower-bounded:

$$\Delta = \|x^*\|_2^2 - \|x_0\|_2^2 \geq 2\theta \left(\|x^*\|_2^2 - (x^*)^\top \hat{x}\right) - \theta^2 \|\hat{x} - x^*\|_2^2 \equiv \Delta$$ \hspace{1cm} (18.51)

- When $0 \leq \theta < \frac{2\left(\|x^*\|_2^2 - (x^*)^\top \hat{x}\right)}{\|\hat{x} - x^*\|_2^2}$, we can get the maximal value of the lower bound, over θ, as follows:

$$\max_{0 \leq \theta < \frac{2\left(\|x^*\|_2^2 - (x^*)^\top \hat{x}\right)}{\|\hat{x} - x^*\|_2^2}} \Delta = \left(\frac{\|x^*\|_2^2 - (x^*)^\top \hat{x}}{\|\hat{x} - x^*\|_2^2}\right)^2$$ \hspace{1cm} (18.52)
To maximize lower bound of norm reduction at each major iteration, want to find an \(\hat{x} \) such that the above lower bound (Equation 18.52) is maximized.
To maximize lower bound of norm reduction at each major iteration, want to find an \(\hat{x} \) such that the above lower bound (Equation 18.52) is maximized.

That is, we want to find

\[
\hat{x} \in \arg\max_{x \in P} \left(\frac{\|x^*\|_2^2 - (x^*)^\top x}{\|x - x^*\|_2} \right)^2
\]

(18.53)

to ensure that a large norm reduction is assured.
To maximize lower bound of norm reduction at each major iteration, want to find an \(\hat{x} \) such that the above lower bound (Equation 18.52) is maximized.

That is, we want to find

\[
\hat{x} \in \arg\max_{x \in P} \left(\frac{\|x^*\|_2^2 - (x^*)^\top x}{\|x - x^*\|_2} \right)^2
\]

(18.53)

to ensure that a large norm reduction is assured.

This problem, however, is at least as hard as the MN problem itself as we have a quadratic term in the denominator.
Line: 6: Finding $\hat{x} \in P$ on the near side of $H(x^*)$

- As a surrogate, we maximize numerator in Eqn. 18.53, i.e., find

$$\hat{x} \in \arg\max_{x \in P} \|x^*\|_2^2 - (x^*)^T x = \arg\min_{x \in P} (x^*)^T x,$$ \hspace{1cm} (18.54)

Intuitively, by solving the above, we find \hat{x} such that it has the largest distance to the hyperplane $H(x^*)$, and this is exactly the strategy used in the Wolfe-1976 algorithm. Also, solution \hat{x} can be used to determine if hyperplane $H(x^*)$ separates $\text{conv } P$ from the origin: if the point in P having greatest distance to $H(x^*)$ is not on the side where origin lies, then $H(x^*)$ separates $\text{conv } P$ from the origin.

Mathematically, we terminate the algorithm if

$$(x^*)^T \hat{x} \geq \|x^*\|_2^2,$$

where \hat{x} is the solution of Eq. 18.54.
Line: 6: Finding $\hat{x} \in P$ on the near side of $H(x^*)$

- As a surrogate, we maximize numerator in Eqn. 18.53, i.e., find

$$\hat{x} \in \arg\max_{x \in P} \|x^*\|_2^2 - (x^*)^T x = \arg\min_{x \in P} (x^*)^T x,$$ \hspace{1cm} (18.54)

- Intuitively, by solving the above, we find \hat{x} such that it has the largest distance to the hyperplane $H(x^*)$, and this is exactly the strategy used in the Wolfe-1976 algorithm.
Lovász extension examples

Min-Norm Point Algorithm

Line: 6: Finding $\hat{x} \in P$ on the near side of $H(x^*)$

- As a surrogate, we maximize numerator in Eqn. 18.53, i.e., find

$$\hat{x} \in \arg\max_{x \in P} \|x^*\|_2^2 - (x^*)^\top x = \arg\min_{x \in P} (x^*)^\top x,$$

(18.54)

- Intuitively, by solving the above, we find \hat{x} such that it has the largest distance to the hyperplane $H(x^*)$, and this is exactly the strategy used in the Wolfe-1976 algorithm.

- Also, solution \hat{x} can be used to determine if hyperplane $H(x^*)$ separates $\text{conv } P$ from the origin: if the point in P having greatest distance to $H(x^*)$ is not on the side where origin lies, then $H(x^*)$ separates $\text{conv } P$ from the origin.
As a surrogate, we maximize numerator in Eqn. 18.53, i.e., find
\[
\hat{x} \in \arg\max_{x \in P} \|x^*\|_2^2 - (x^*)^\top x = \arg\min_{x \in P} (x^*)^\top x,
\]
(18.54)

Intuitively, by solving the above, we find \(\hat{x}\) such that it has the largest distance to the hyperplane \(H(x^*)\), and this is exactly the strategy used in the Wolfe-1976 algorithm.

Also, solution \(\hat{x}\) can be used to determine if hyperplane \(H(x^*)\) separates \(\text{conv } P\) from the origin: if the point in \(P\) having greatest distance to \(H(x^*)\) is not on the side where origin lies, then \(H(x^*)\) separates \(\text{conv } P\) from the origin.

Mathematically, we terminate the algorithm if
\[
(x^*)^\top \hat{x} \geq \|x^*\|_2^2,
\]
where \(\hat{x}\) is the solution of Eq. 18.54.
In practice, the above optimality test might never hold numerically. Hence, as suggested by Wolfe, we introduce a tolerance parameter $\epsilon > 0$, and terminates the algorithm if

$$
(x^*)^\top \hat{x} > \|x^*\|_2^2 - \epsilon \max_{x \in Q} \|x\|_2^2
$$

(18.55)
Lovász extension examples

Line: 6: Finding $\hat{x} \in P$ on the near side of $H(x^*)$

- In practice, the above optimality test might never hold numerically. Hence, as suggested by Wolfe, we introduce a tolerance parameter $\epsilon > 0$, and terminates the algorithm if

$$ (x^*)^\top \hat{x} > \|x^*\|^2_2 - \epsilon \max_{x \in Q} \|x\|^2_2 $$

(18.55)

- When $\text{conv } P$ is a submodular base polytope (i.e., $\text{conv } P = B_f$ for a submodular function f), then the problem in Eqn 18.54 can be solved efficiently by Edmonds's greedy algorithm (even though there may be an exponential number of extreme points).
Line: 6: Finding \(\hat{x} \in P \) on the near side of \(H(x^*) \)

- In practice, the above optimality test might never hold numerically. Hence, as suggested by Wolfe, we introduce a tolerance parameter \(\epsilon > 0 \), and terminates the algorithm if

\[
(x^*)^\top \hat{x} > \|x^*\|^2_2 - \epsilon \max_{x \in Q} \|x\|^2_2
\]

(18.55)

- When \(\text{conv } P \) is a submodular base polytope (i.e., \(\text{conv } P = B_f \) for a submodular function \(f \)), then the problem in Eqn 18.54 can be solved efficiently by Edmonds’s greedy algorithm (even though there may be an exponential number of extreme points).

- Hence, Edmonds’s discovery is one of the main reasons that the MN algorithm is applicable to submodular function minimization.
Lovász extension examples

Min-Norm Point Algorithm

SFM Summary (modified from S. Iwata’s slides)

General Submodular Function Minimization

Minimum norm point algorithm

Fully Combinatorial

Iwata, Fleischer, Fujishige (2000) → Cunningham (1985) → O(n^5 \gamma \log M)

O(n^7 \gamma \log n)

Iwata (2002) → Iwata (2003) → O((n^4 \gamma + n^5) \log M)

Iwata, Fleischer, Fujishige (2000) → Fleischer, Iwata (2000) → O(n^7 \gamma + n^8)

Iwata (2003) → Olin (2007) → O(n^5 \gamma + n^6)

Iwata, Orlin (2009)
MN Algorithm Complexity

- The currently fastest strongly polynomial combinatorial algorithm for SFM achieves a running time of $O(n^5T + n^6)$ (Orlin’09) where T is the time for function evaluation, far from practical for large problem instances.
MN Algorithm Complexity

- The currently fastest strongly polynomial combinatorial algorithm for SFM achieves a running time of $O(n^5T + n^6)$ (Orlin’09) where T is the time for function evaluation, far from practical for large problem instances.

- Fujishige & Isotani report that MN algorithm is fast in practice, but they use only a limited set of submodular functions.
The currently fastest strongly polynomial combinatorial algorithm for SFM achieves a running time of $O(n^5T + n^6)$ (Orlin’09) where T is the time for function evaluation, far from practical for large problem instances.

Fujishige & Isotani report that MN algorithm is fast in practice, but they use only a limited set of submodular functions.

Complexity of MN Algorithm is still an unsolved problem.
The currently fastest strongly polynomial combinatorial algorithm for SFM achieves a running time of $O(n^5T + n^6)$ (Orlin’09) where T is the time for function evaluation, far from practical for large problem instances.

Fujishige & Isotani report that MN algorithm is fast in practice, but they use only a limited set of submodular functions.

Complexity of MN Algorithm is still an unsolved problem.

Obvious facts:
MN Algorithm Complexity

- The currently fastest strongly polynomial combinatorial algorithm for SFM achieves a running time of $O(n^5T + n^6)$ (Orlin’09) where T is the time for function evaluation, far from practical for large problem instances.
- Fujishige & Isotani report that MN algorithm is fast in practice, but they use only a limited set of submodular functions.
- Complexity of MN Algorithm is still an unsolved problem.
 - Obvious facts:
 - each major iteration requires $O(n)$ function oracle calls
MN Algorithm Complexity

- The currently fastest strongly polynomial combinatorial algorithm for SFM achieves a running time of $O(n^5T + n^6)$ (Orlin’09) where T is the time for function evaluation, far from practical for large problem instances.
- Fujishige & Isotani report that MN algorithm is fast in practice, but they use only a limited set of submodular functions.
- Complexity of MN Algorithm is still an unsolved problem.
- Obvious facts:
 - each major iteration requires $O(n)$ function oracle calls
 - complexity of each major iteration could be at least $O(n^3)$ due to the affine projection step (solving a linear system).
MN Algorithm Complexity

- The currently fastest strongly polynomial combinatorial algorithm for SFM achieves a running time of $O(n^5T + n^6)$ (Orlin’09) where T is the time for function evaluation, far from practical for large problem instances.
- Fujishige & Isotani report that MN algorithm is fast in practice, but they use only a limited set of submodular functions.
- Complexity of MN Algorithm is still an unsolved problem.
- Obvious facts:
 - each major iteration requires $O(n)$ function oracle calls
 - complexity of each major iteration could be at least $O(n^3)$ due to the affine projection step (solving a linear system).
 - Therefore, the complexity of each major iteration is $O(n^3 + n^{1+p})$

 where each function oracle call requires $O(n^p)$ time.
MN Algorithm Complexity

- The currently fastest strongly polynomial combinatorial algorithm for SFM achieves a running time of $O(n^5T + n^6)$ (Orlin’09) where T is the time for function evaluation, far from practical for large problem instances.

- Fujishige & Isotani report that MN algorithm is fast in practice, but they use only a limited set of submodular functions.

- Complexity of MN Algorithm is still an unsolved problem.

- Obvious facts:
 - each major iteration requires $O(n)$ function oracle calls
 - complexity of each major iteration could be at least $O(n^3)$ due to the affine projection step (solving a linear system).
 - Therefore, the complexity of each major iteration is $O(n^3 + n^{1+p})$

where each function oracle call requires $O(n^p)$ time.

- Since the number of major iterations required is unknown, the complexity of MN is also unknown.
Lovász extension examples

Min-Norm Point Algorithm

MN Algorithm Empirical Complexity

Figure: The number of major iteration for $f(S) = -m_1(S) + 100 \cdot (w_1(f(S))(S))^{\alpha}$. The red lines are the linear interpolations of the worst case points, and the black lines are the linear interpolations of the average case points. From Lin & Bilmes 2014 (unpublished)