Logistics

Review

Cumulative Outstanding Reading

- Read chapters 1 and 2, and sections 3.1-3.2 from Fujishige's book.
Announcements, Assignments, and Reminders

- Weekly Office Hours: Wednesdays, 5:00-5:50, or by skype or google hangout (email me).

Class Road Map - IT-I

- L1 (3/31): Motivation, Applications, & Basic Definitions
- L2: (4/2): Applications, Basic Definitions, Properties
- L3: More examples and properties (e.g., closure properties), and examples, spanning trees
- L4: proofs of equivalent definitions, independence, start matroids
- L5: matroids, basic definitions and examples
- L6: More on matroids, System of Distinct Reps, Transversals, Transversal Matroid, Matroid and representation
- L7: Dual Matroids, other matroid properties, Combinatorial Geometries
- L8: Combinatorial Geometries, matroids and greedy, Polyhedra, Matroid Polytopes,
- L9: From Matroid Polytopes to Polymatroids.
- L10: Polymatroids and Submodularity
- L11: More properties of polymatroids, SFM special cases
- L12:
- L13:
- L14:
- L15:
- L16:
- L17:
- L18:
- L19:
- L20:

Finals Week: June 9th-13th, 2014.
Let \((E, I)\) be an independence system, and we are given a non-negative modular weight function \(w : E \to \mathbb{R}_+\).

Algorithm 1: The Matroid Greedy Algorithm

1. Set \(X \leftarrow \emptyset\);
2. while \(\exists v \in E \setminus X\) s.t. \(X \cup \{v\} \in I\) do
3. \(v \in \arg \max \{w(v) : v \in E \setminus X, X \cup \{v\} \in I\}\);
4. \(X \leftarrow X \cup \{v\}\);

Same as sorting items by decreasing weight \(w\), and then choosing items in that order that retain independence.

Theorem 9.2.2

Let \((E, I)\) be an independence system. Then the pair \((E, I)\) is a matroid if and only if for each weight function \(w \in \mathbb{R}_+^E\), Algorithm 1 leads to a set \(I \in \mathcal{I}\) of maximum weight \(w(I)\).

Matroid Polyhedron in 2D

\[
P_r^+ = \{ x \in \mathbb{R}^E : x \geq 0, x(A) \leq r(A), \forall A \subseteq E \} \tag{9.10}
\]

Consider this in two dimensions. We have equations of the form:

\[
x_1 \geq 0 \text{ and } x_2 \geq 0 \tag{9.11}
\]

\[
x_1 \leq r(\{v_1\}) \tag{9.12}
\]

\[
x_2 \leq r(\{v_2\}) \tag{9.13}
\]

\[
x_1 + x_2 \leq r(\{v_1, v_2\}) \tag{9.14}
\]

Because \(r\) is submodular, we have

\[
r(\{v_1\}) + r(\{v_2\}) \geq r(\{v_1, v_2\}) + r(\emptyset) \tag{9.15}
\]

so since \(r(\{v_1, v_2\}) \leq r(\{v_1\}) + r(\{v_2\})\), the last inequality is either touching or active.
Matroid Polyhedron in 2D

And, if v2 is a loop ...

Independence Polyhedra

- For each $I \in \mathcal{I}$ of a matroid $M = (E, \mathcal{I})$, we can form the incidence vector 1_I.
- Taking the convex hull, we get the independent set polytope, that is
 \[P_{\text{ind. set}} = \text{conv} \left\{ \bigcup_{I \in \mathcal{I}} \{1_I\} \right\} \]
 (9.10)

- Since $\{1_I : I \in \mathcal{I}\} \subseteq P_{\text{ind. set}}$, we have
 $\max \{w(I) : I \in \mathcal{I}\} \leq \max \{w^T x : x \in P_{\text{ind. set}}\}$.
- Now take the rank function r of M, and define the following polyhedron:
 \[P_r^+ = \{x \in \mathbb{R}^E : x \geq 0, x(A) \leq r(A), \forall A \subseteq E\} \]
 (9.11)

- Now, take any $x \in P_{\text{ind. set}}$, then we have that $x \in P_r^+$ (or $P_{\text{ind. set}} \subseteq P_r^+$). We show this next.
If \(x \in P_{\text{ind. set}} \), then
\[
x = \sum_{i} \lambda_i 1_{I_i}
\] (9.10)
for some appropriate vector \(\lambda = (\lambda_1, \lambda_2, \ldots, \lambda_n) \).

Clearly, for such \(x \), \(x \geq 0 \).

Now, for any \(A \subseteq E \),
\[
x(A) = x^T 1_A = \sum_{i} \lambda_i 1_{I_i}^T 1_A \leq \sum_{i} \lambda_i \max_{j: I_j \subseteq A} 1_{I_j}(E)
\] (9.12)
\[
= \max_{j: I_j \subseteq A} 1_{I_j}(E)
\] (9.13)
\[
= r(A)
\] (9.14)

Thus, \(x \in P^+_r \) and hence \(P_{\text{ind. set}} \subseteq P^+_r \).

So recall from a moment ago, that we have that
\[
P_{\text{ind. set}} = \text{conv} \{ \cup_{I \in \mathcal{I}} \{1_I\} \}
\subseteq P^+_r = \{ x \in \mathbb{R}^E : x \geq 0, x(A) \leq r(A), \forall A \subseteq E \} \tag{9.19}
\]

In fact, the two polyhedra are identical (and thus both are polytopes).
We’ll show this in the next few theorems.
Theorem 9.2.6

Let $M = (V, I)$ be a matroid, with rank function r, then for any weight function $w \in \mathbb{R}_+^V$, there exists a chain of sets $U_1 \subset U_2 \subset \cdots \subset U_n \subseteq V$ such that

$$\max \{w(I) | I \in \mathcal{I}\} = \sum_{i=1}^{n} \lambda_i r(U_i) \quad (9.19)$$

where $\lambda_i \geq 0$ satisfy

$$w = \sum_{i=1}^{n} \lambda_i 1_{U_i} \quad (9.20)$$

Linear Program LP

Consider the linear programming primal problem

$$\text{maximize} \quad w^\top x$$
$$\text{subject to} \quad x_v \geq 0 \quad (v \in V) \quad (9.1)$$
$$x(U) \leq r(U) \quad (\forall U \subseteq V)$$

And its convex dual (note $y \in \mathbb{R}_+^{2^n}$, y_U is a scalar element within this exponentially big vector):

$$\text{minimize} \quad \sum_{U \subseteq V} y_U r(U),$$
$$\text{subject to} \quad y_U \geq 0 \quad (\forall U \subseteq V)$$
$$\sum_{U \subseteq V} y_U 1_U \geq w \quad (9.2)$$

Thanks to strong duality, the solutions to these are equal to each other.
Consider the linear programming primal problem

\[
\begin{align*}
\text{maximize} & \quad w^\top x \\
\text{subject to} & \quad x_v \geq 0 \quad (v \in V) \\
& \quad x(U) \leq r(U) \quad (\forall U \subseteq V)
\end{align*}
\]

\[(9.3) \]

This is identical to the problem

\[
\text{max } w^\top x \text{ such that } x \in P_{\text{ind. set}}^+
\]

\[(9.4) \]

where, again, \(P_{\text{ind. set}}^+ = \{ x \in \mathbb{R}^E : x \geq 0, x(A) \leq r(A), \forall A \subseteq E \} \).

Therefore, since \(P_{\text{ind. set}} \subseteq P_{\text{ind. set}}^+ \), the above problem can only have a larger solution. I.e.,

\[
\text{max } w^\top x \text{ s.t. } x \in P_{\text{ind. set}} \leq \text{max } w^\top x \text{ s.t. } x \in P_{\text{ind. set}}^+.
\]

\[(9.5) \]

Hence, we have the following relations:

\[
\max \{ w(I) : I \in \mathcal{I} \} \leq \max \{ w^\top x : x \in P_{\text{ind. set}} \} \leq \max \{ w^\top x : x \in P_{\text{ind. set}}^+ \}
\]

\[(9.6) \]

\[(9.7) \]

\[
\alpha_{\text{min}} \overset{\text{def}}{=} \min \left\{ \sum_{U \subseteq V} y_U r(U) : y \geq 0, \sum_{U \subseteq V} y_U 1_U \geq w \right\}
\]

\[(9.8) \]

Theorem 8.6.1 states that

\[
\max \{ w(I) : I \in \mathcal{I} \} = \sum_{i=1}^{n} \lambda_i r(U_i)
\]

\[(9.9) \]

for the chain of \(U_i \)'s and \(\lambda_i \geq 0 \) that satisfies \(w = \sum_{i=1}^{n} \lambda_i 1_{U_i} \) (i.e., the r.h.s. of Eq. 9.9 is feasible w.r.t. the dual LP).

Therefore, we also have

\[
\max \{ w(I) : I \in \mathcal{I} \} \geq \alpha_{\text{min}}
\]

\[(9.10) \]
Polytope equivalence

- Hence, we have the following relations:
 \[
 \max \{ w(I) : I \in \mathcal{I} \} = \max \{ w^T x : x \in P_{\text{ind. set}} \} = \max \{ w^T x : x \in P_r^+ \}
 \]
 \[
 = \max \{ w^T x : x \in P_r^+ \}
 \]
 \[
 \def \alpha_{\text{min}} = \min \left\{ \sum_{U \subseteq V} y_U r(U) : y \geq 0, \sum_{U \subseteq V} y_U \mathbf{1}_U \geq w \right\}
 \]

- Therefore, all the inequalities above are equalities.
- And since \(w \in \mathbb{R}_E^+ \) is an arbitrary direction into the positive orthant, we see that \(P_r^+ = P_{\text{ind. set}} \)
- That is, we have just proven:

Theorem 9.3.1

\[
P_r^+ = P_{\text{ind. set}}
\] (9.11)

Polytope Equivalence (Summarizing the above)

- For each \(I \in \mathcal{I} \) of a matroid \(M = (E, \mathcal{I}) \), we can form the incidence vector \(\mathbf{1}_I \).
- Taking the convex hull, we get the independent set polytope, that is
 \[
P_{\text{ind. set}} = \text{conv} \{ \bigcup_{I \in \mathcal{I}} \{ \mathbf{1}_I \} \}
 \] (9.12)

- Now take the rank function \(r \) of \(M \), and define the following polyhedron:
 \[
P_r^+ = \{ x \in \mathbb{R}^E : x \geq 0, x(A) \leq r(A), \forall A \subseteq E \}
 \] (9.13)

Theorem 9.3.2

\[
P_r^+ = P_{\text{ind. set}}
\] (9.14)
Greedy solves a linear programming problem

- So we can describe the independence polytope of a matroid using the set of inequalities (an exponential number of them).
- In fact, considering equations starting at Eq 9.6, the LP problem with exponential number of constraints \(\max \{w^\top x : x \in P^+_r\} \) is identical to the maximum weight independent set problem in a matroid, and since greedy solves the latter problem exactly, we have also proven:

Theorem 9.3.3

The LP problem \(\max \{w^\top x : x \in P^+_r\} \) can be solved exactly using the greedy algorithm.

Note that this LP problem has an exponential number of constraints (since \(P^+_r \) is described as the intersection of an exponential number of half spaces).
- This means that if LP problems have certain structure, they can be solved much easier than immediately implied by the equations.

Base Polytope Equivalence

- Consider convex hull of indicator vectors just of the bases of a matroid, rather than all of the independent sets.
- Consider a polytope defined by the following constraints:

\[
\begin{align*}
 x &\geq 0 \\
 x(A) &\leq r(A) \quad \forall A \subseteq V \quad (9.15) \\
 x(V) & = r(V) \quad (9.17)
\end{align*}
\]

- Note the third requirement, \(x(V) = r(V) \).
- By essentially the same argument as above (Exercise:), we can shown that the convex hull of the incidence vectors of the bases of a matroid is a polytope that can be described by Eq. 9.15- 9.17 above.
- What does this look like?
Recall, a set A is spanning in a matroid $M = (E, \mathcal{I})$ if $r(A) = r(E)$. Consider convex hull of incidence vectors of spanning sets of a matroid M, and call this $P_{\text{spanning}}(M)$.

Theorem 9.3.4

The spanning set polytope is determined by the following equations:

\begin{align*}
0 &\leq x_e \leq 1 \quad \text{for } e \in E \tag{9.18} \\
x(A) &\geq r(E) - r(E \setminus A) \quad \text{for } A \subseteq E \tag{9.19}
\end{align*}

Example of spanning set polytope in 2D.

Proof.

Recall that any A is spanning in M iff $E \setminus A$ is independent in M^* (the dual matroid).

For any $x \in \mathbb{R}^E$, we have that

\[x \in P_{\text{spanning}}(M) \iff 1 - x \in P_{\text{ind. set}}(M^*) \tag{9.20} \]

as we show next . . .
... proof continued.

- This follows since if \(x \in P_{\text{spanning}}(M) \), we can represent \(x \) as a convex combination:
 \[
 x = \sum_{i} \lambda_i 1_{A_i}
 \]
 \[\text{(9.21)}\]

 where \(A_i \) is spanning in \(M \).

- Consider
 \[
 1 - x = 1_E - x = 1_E - \sum_i \lambda_i 1_{A_i} = \sum_i \lambda_i 1_{E \setminus A_i},
 \]
 \[\text{(9.22)}\]

 which follows since \(\sum_i \lambda_i 1 = 1_E \), so \(1 - x \) is a convex combination of independent sets in \(M^* \) and so \(1 - x \in P_{\text{ind. set}}(M^*) \).

... which means, from the definition of \(P_{\text{ind. set}}(M^*) \), that

\[
1 - x \geq 0 \quad (9.23)
\]

\[
1_A - x(A) = |A| - x(A) \leq r_{M^*}(A) \text{ for } A \subseteq E \quad (9.24)
\]

And we know the dual rank function is

\[
r_{M^*}(A) = |A| + r_M(E \setminus A) - r_M(E) \quad (9.25)
\]

- giving

\[
x(A) \geq r_M(E) - r_M(E \setminus A) \text{ for all } A \subseteq E \quad (9.26)
\]
Matroids
where are we going with this?

- We've been discussing results about matroids (independence polytope, etc.).
- By now, it is clear that matroid rank functions are special cases of submodular functions. We ultimately will be reviewing submodular function minimization procedures, but in some cases it it worth showing a result for a general submodular function first.
- Henceforth, we will skip between submodular functions and matroids, each lecture talking less about matroids specifically and taking more about submodular functions more generally ...

Maximal points in a set

- Regarding sets, a subset X of S is a maximal subset of S possessing a given property \mathcal{P} if X possesses property \mathcal{P} and no set properly containing X (i.e., any $X' \supset X$ with $X' \setminus X \subseteq V \setminus X$) possesses \mathcal{P}.
- Given any compact (essentially closed & bounded) set $P \subseteq \mathbb{R}^E$, we say that a vector x is maximal within P if it is the case that for any $\epsilon > 0$, and for all $e \in E$, we have that

$$x + \epsilon 1_e \notin P \quad (9.27)$$

- Examples of maximal regions (in red)
Maximal points in a set

- Regarding sets, a subset X of S is a maximal subset of S possessing a given property \mathcal{P} if X possesses property \mathcal{P} and no set properly containing X (i.e., any $X' \supset X$ with $X' \setminus X \subseteq V \setminus X$) possesses \mathcal{P}.
- Given any compact (essentially closed & bounded) set $P \subseteq \mathbb{R}^E$, we say that a vector x is maximal within P if it is the case that for any $\epsilon > 0$, and for all $e \in E$, we have that
 \[x + \epsilon 1_e \notin P \]
 \[(9.27)\]

- Examples of non-maximal regions (in green)

![Examples of non-maximal regions](image)

Review

- The next slide comes from Lecture 5.
Matroids, independent sets, and bases

- **Independent sets:** Given a matroid $M = (E, \mathcal{I})$, a subset $A \subseteq E$ is called **independent** if $A \in \mathcal{I}$ and otherwise A is called **dependent**.

- **A base of $U \subseteq E$:** For $U \subseteq E$, a subset $B \subseteq U$ is called a **base** of U if B is inclusionwise maximally independent subset of U. That is, $B \in \mathcal{I}$ and there is no $Z \in \mathcal{I}$ with $B \subset Z \subseteq U$.

- **A base of a matroid:** If $U = E$, then a “base of E” is just called a **base** of the matroid M (this corresponds to a **basis** in a linear space).

P-basis of x given compact set $P \subseteq \mathbb{R}^E_+$

Definition 9.4.1 (subvector)

y is a **subvector** of x if $y \leq x$ (meaning $y(e) \leq x(e)$ for all $e \in E$).

Definition 9.4.2 (P-basis)

Given a compact set $P \subseteq \mathbb{R}^E_+$, for any $x \in \mathbb{R}^E_+$, a subvector y of x is called a **P-basis** of x if y maximal in P.

In other words, y is a P-basis of x if y is a maximal P-contained subvector of x.

Here, by y being “maximal”, we mean that there exists no $z > y$ (more precisely, no $z \geq y + \epsilon 1_e$ for some $e \in E$ and $\epsilon > 0$) having the properties of y (the properties of y being: in P, and a subvector of x).

In still other words: y is a P-basis of x if:

1. $y \leq x$ (y is a subvector of x); and
2. $y \in P$ and $y + \epsilon 1_e \notin P$ for all $e \in E$ where $y(e) < x(e)$ and $\forall \epsilon > 0$ (y is maximal P-contained).

A vector form of rank

- Recall the definition of rank from a matroid \(M = (E, I) \).

 \[
 \text{rank}(A) = \max \{ |I| : I \subseteq A, I \in \mathcal{I} \} \tag{9.28}
 \]

- **vector rank:** Given a compact set \(P \subseteq \mathbb{R}^E_{+} \), we can define a form of “vector rank” relative to this \(P \) in the following way: Given an \(x \in \mathbb{R}^E \), we define the vector rank, relative to \(P \), as:

 \[
 \text{rank}(x) = \max (y(E) : y \leq x, y \in P) \tag{9.29}
 \]

 where \(y \leq x \) is componentwise inequality (\(y_i \leq x_i, \forall i \)).

- If \(B_x \) is the set of \(P \)-bases of \(x \), then \(\text{rank}(x) = \max_{y \in B_x} y(E) \).

- If \(x \in P \), then \(\text{rank}(x) = x(E) \) (\(x \) is its own unique self \(P \)-basis).

- In general, this might be hard to compute and/or have ill-defined properties. We next look at an object that restrains and cultivates this form of rank.

Polymatroidal polyhedron (or a “polymatroid”)

Definition 9.4.3 (polymatroid)

A *polymatroid* is a compact set \(P \subseteq \mathbb{R}^E_{+} \) satisfying

1. \(0 \in P \)
2. If \(y \leq x \in P \) then \(y \in P \) (called **down monotone**).
3. For every \(x \in \mathbb{R}^E_{+} \), any maximal vector \(y \in P \) with \(y \leq x \) (i.e., any \(P \)-basis of \(x \)), has the same component sum \(y(E) \)

- **Condition 3 restated:** That is for any two distinct maximal vectors \(y^1, y^2 \in P \), with \(y^1 \leq x \) & \(y^2 \leq x \), with \(y^1 \neq y^2 \), we must have \(y^1(E) = y^2(E) \).

- **Condition 3 restated (again):** For every vector \(x \in \mathbb{R}^E_{+} \), every maximal independent subvector \(y \) of \(x \) has the same component sum \(y(E) = \text{rank}(x) \).

- **Condition 3 restated (yet again):** All \(P \)-bases of \(x \) have the same component sum.
Polymatroidal polyhedron (or a “polymatroid”)

Definition 9.4.3 (polymatroid)

A **polymatroid** is a compact set $P \subseteq \mathbb{R}^E_+$ satisfying

1. $0 \in P$
2. If $y \leq x \in P$ then $y \in P$ (called down monotone).
3. For every $x \in \mathbb{R}^E_+$, any maximal vector $y \in P$ with $y \leq x$ (i.e., any P-basis of x), has the same component sum $y(E)$

- Vectors within P (i.e., any $y \in P$) are called independent, and any vector outside of P is called dependent.
- Since all P-bases of x have the same component sum, if B_x is the set of P-bases of x, than $\text{rank}(x) = y(E)$ for any $y \in B_x$.

Matroid and Polymatroid: side-by-side

A **Matroid** is:

1. a set system (E, \mathcal{I})
2. empty-set containing $\emptyset \in \mathcal{I}$
3. down closed, $\emptyset \subseteq I' \subseteq I \in \mathcal{I} \Rightarrow I' \in \mathcal{I}$.
4. any maximal set I in \mathcal{I}, bounded by another set A, has the same matroid rank (any maximal independent subset $I \subseteq A$ has same size $|I|$).

A **Polymatroid** is:

1. a compact set $P \subseteq \mathbb{R}^E_+$
2. zero containing, $0 \in P$
3. down monotone, $0 \leq y \leq x \in P \Rightarrow y \in P$
4. any maximal vector y in P, bounded by another vector x, has the same vector rank (any maximal independent subvector $y \leq x$ has same sum $y(E)$).
Polymatroidal polyhedron (or a “polymatroid”)

Left: \exists multiple maximal $y \leq x$
Right: \exists only one maximal $y \leq x$,

- Polymatroid condition here: \forall maximal $y \in P$, with $y \leq x$ (which here means $y_1 \leq x_1$ and $y_2 \leq x_2$), we just have $y(E) = y_1 + y_2 = \text{const}$.
- On the left, we see there are multiple possible maximal $y \in P$ such that $y \leq x$. Each such y must have the same value $y(E)$.
- On the right, there is only one maximal $y \in P$. Since there is only one, the condition on the same value of $y(E), \forall y$ is vacuous.

\exists only one maximal $y \leq x$.

- If $x \in P$ already, then x is its own P-basis, i.e., it is a self P-basis.
- In a matroid, a base of A is the maximally contained independent set. If A is already independent, then A is a self-base of A (as we saw in Lecture 5).
Polymatroid as well? no

Left and right: \exists multiple maximal $y \leq x$ as indicated.

- On the left, we see there are multiple possible maximal such $y \in P$ that are $y \leq x$. Each such y must have the same value $y(E)$, but since the equation for the curve is $y_1^2 + y_2^2 = \text{const.} \neq y_1 + y_2$, we see this is not a polymatroid.

- On the right, we have a similar situation, just the set of potential values that must have the $y(E)$ condition changes, but the values of course are still not constant.

Other examples: Polymatroid or not?
It appears that we have three possible forms of polymatroid in 2D, when neither of the elements \(\{v_1, v_2\} \) are self-dependent.

1. On the left: full dependence between \(v_1 \) and \(v_2 \)
2. In the middle: full independence between \(v_1 \) and \(v_2 \)
3. On the right: partial independence between \(v_1 \) and \(v_2 \)

- The \(P \)-bases (or single \(P \)-base in the middle case) are as indicated.
- Independent vectors are those within or on the boundary of the polytope. Dependent vectors are exterior to the polytope.
- The set of \(P \)-bases for a polytope is called the base polytope.

Polymatroidal polyhedron (or a “polymatroid”)

- Note that if \(x \) contains any zeros (i.e., suppose that \(x \in \mathbb{R}^E_+ \) has \(E \setminus S \) s.t. \(x(E \setminus S) = 0 \), so \(S \) indicates the non-zero elements, or \(S = \text{supp}(x) \)), then this also forces \(y(E \setminus S) = 0 \), so that \(y(E) = y(S) \). This is true either for \(x \in P \) or \(x \notin P \).
- Therefore, in this case, it is the non-zero elements of \(x \), corresponding to elements \(S \) (i.e., the support \(\text{supp}(x) \) of \(x \)), determine the common component sum.
- For the case of either \(x \notin P \) or right at the boundary of \(P \), we might give a “name” to this component sum, lets say \(f(S) \) for any given set \(S \) of non-zero elements of \(x \). We could name \(\epsilon \text{rank}(\frac{1}{\epsilon} 1_S) \triangleq f(S) \) for \(\epsilon \) very small. What kind of function might \(f \) be?
Polymatroid function and its polyhedron.

Definition 9.4.4

A **polymatroid function** is a real-valued function f defined on subsets of E which is normalized, non-decreasing, and submodular. That is we have

1. $f(\emptyset) = 0$ (normalized)
2. $f(A) \leq f(B)$ for any $A \subseteq B \subseteq E$ (monotone non-decreasing)
3. $f(A \cup B) + f(A \cap B) \leq f(A) + f(B)$ for any $A, B \subseteq E$ (submodular)

We can define the polyhedron P_f^+ associated with a polymatroid function as follows

$$P_f^+ = \{ y \in \mathbb{R}_+^E : y(A) \leq f(A) \text{ for all } A \subseteq E \}$$ \hspace{1cm} (9.30)

$$= \{ y \in \mathbb{R}^E : y \geq 0, y(A) \leq f(A) \text{ for all } A \subseteq E \}$$ \hspace{1cm} (9.31)

Consider this in three dimensions. We have equations of the form:

$$x_1 \geq 0 \text{ and } x_2 \geq 0 \text{ and } x_3 \geq 0$$ \hspace{1cm} (9.33)

$$x_1 \leq f(\{v_1\})$$ \hspace{1cm} (9.34)

$$x_2 \leq f(\{v_2\})$$ \hspace{1cm} (9.35)

$$x_3 \leq f(\{v_3\})$$ \hspace{1cm} (9.36)

$$x_1 + x_2 \leq f(\{v_1, v_2\})$$ \hspace{1cm} (9.37)

$$x_2 + x_3 \leq f(\{v_2, v_3\})$$ \hspace{1cm} (9.38)

$$x_1 + x_3 \leq f(\{v_1, v_3\})$$ \hspace{1cm} (9.39)

$$x_1 + x_2 + x_3 \leq f(\{v_1, v_2, v_3\})$$ \hspace{1cm} (9.40)
Consider the asymmetric graph cut function on the simple chain graph \(v_1 - v_2 - v_3 \). That is, \(f(S) = |\{(v, s) \in E(G) : v \in V, s \in S\}| \) is count of any edges within \(S \) or between \(S \) and \(V \setminus S \), so that \(\delta(S) = f(S) + f(V \setminus S) - f(V) \) is the standard graph cut.

Observe: \(P_f^+ \) (at two views):

which axis is which?
Matroid Polytopes

Polymatroid

Associated polyhedron with a polymatroid function

- Consider modular function $w : V \rightarrow \mathbb{R}_+$ as $w = (1, 1.5, 2)^\top$, and then the submodular function $f(S) = \sqrt{w(S)}$.
- Observe: P^+_f (at two views):

![Polyhedron Diagram](image)

- which axis is which?

Matroid Polytopes

Polymatroid

Associated polytope with a non-submodular function

- Consider function on integers: $g(0) = 0$, $g(1) = 3$, $g(2) = 4$, and $g(3) = 5.5$. Is $f(S) = g(|S|)$ submodular? $f(S) = g(|S|)$ is not submodular since $f(\{e_1, e_3\}) + f(\{e_1, e_2\}) = 4 + 4 = 8$ but $f(\{e_1, e_2, e_3\}) + f(\{e_1\}) = 5.5 + 3 = 8.5$. Alternatively, consider concavity violation, $1 = g(1 + 1) - g(1) < g(2 + 1) - g(2) = 1.5$.
- Observe: P^+_f (at two views), maximal independent subvectors not constant rank, hence not a polymatroid.
Summarizing the above, we have:

- Given a **polymatroid function** \(f \), its associated polytope is given as
 \[
 P_f^+ = \left\{ y \in \mathbb{R}_E^+ : y(A) \leq f(A) \text{ for all } A \subseteq E \right\}
 \] (9.41)

- We also have the definition of a **polymatroidal polytope** \(P \) (compact subset, zero containing, down-monotone, and \(\forall x \) any maximal independent subvector \(y \leq x \) has same component sum \(y(E) \)).

- Is there any relationship between these two polytopes?

- In the next theorem, we show that any \(P_f^+ \)-basis has the same component sum, when \(f \) is a polymatroid function, and \(P_f^+ \) satisfies the other properties so that \(P_f^+ \) is a polymatroid.

Theorem 9.4.5

*Let \(f \) be a polymatroid function defined on subsets of \(E \). For any \(x \in \mathbb{R}_E^+ \), and any \(P_f^+ \)-basis \(y^x \in \mathbb{R}_E^+ \) of \(x \), the component sum of \(y^x \) is

\[
y^x(E) = \text{rank}(x) = \max \left(y(E) : y \leq x, y \in P_f^+ \right)
= \min \left(x(A) + f(E \setminus A) : A \subseteq E \right)
\] (9.42)

As a consequence, \(P_f^+ \) is a polymatroid, since r.h.s. is constant w.r.t. \(y^x \).*

By taking \(B = \text{supp}(x) \) (so elements \(E \setminus B \) are zero in \(x \)), and for \(b \in B \), \(x(b) \) is big enough, the r.h.s. min has solution \(A^* = E \setminus B \). We recover submodular function from the polymatroid polyhedron via the following:

\[
f(B) = \max \left\{ y(B) : y \in P_f^+ \right\}
\] (9.43)

In fact, we will ultimately see a number of important consequences of this theorem (other than just that \(P_f^+ \) is a polymatroid).